scholarly journals The Shiga Toxin 1-Converting Bacteriophage BP-4795 Encodes an NleA-Like Type III Effector Protein

2005 ◽  
Vol 187 (24) ◽  
pp. 8494-8498 ◽  
Author(s):  
Kristina Creuzburg ◽  
Jürgen Recktenwald ◽  
Volker Kuhle ◽  
Sylvia Herold ◽  
Michael Hensel ◽  
...  

ABSTRACT In this study, the complete DNA sequence of Shiga toxin 1-converting bacteriophage BP-4795 was determined. The genome of BP-4795 consists of 85 open reading frames, including two complete IS629 elements and three morons at the end of its late regulatory region. One of these morons encodes a type III effector that is translocated by the locus of enterocyte effacement-encoded type III secretion system into HeLa cells, where it localizes with the Golgi apparatus.

2003 ◽  
Vol 71 (1) ◽  
pp. 242-253 ◽  
Author(s):  
Boris Foultier ◽  
Paul Troisfontaines ◽  
Didier Vertommen ◽  
Marie-Noëlle Marenne ◽  
Mark Rider ◽  
...  

ABSTRACT All pathogenic Yersinia enterocolitica strains carry the pYV plasmid encoding the Ysc-Yop type III secretion (TTS) system, which operates at 37°C. In addition, biovar 1B Y. enterocolitica strains possess a second, chromosomally encoded, TTS system called Ysa, which operates, at least in vitro, under low-temperature and high-salt (LTHS) conditions. Six open reading frames, sycB, yspB, yspC, yspD, yspA, and acpY, neighbor the ysa genes encoding the Ysa TTS apparatus. Here we show that YspA, YspB, YspC, and YspD are secreted by the Ysa TTS system under LTHS conditions. SycB is a chaperone for YspB and YspC and stabilizes YspB. YspB, YspC, and SycB share some similarity with TTS substrates and the chaperone encoded by the Mxi-Spa locus of Shigella flexneri and SPI-1 of Salmonella enterica. In addition, Ysa also secretes the pYV-encoded YopE under LTHS conditions, indicating that YopE is a potential effector of both Y. enterocolitica TTS systems. YspC could also be secreted by S. flexneri, but no functional complementation of ipaC was observed, which indicates that despite their similarity the Ysa and the Mxi-Spa systems are not interchangeable. When expressed from the yopE promoter, YspB and YspC could also be secreted via the Ysc injectisome. However, they could not form detectable pores in eukaryotic target cells and could not substitute for YopB and YopD for translocation of Yop effectors.


2020 ◽  
Vol 110 (5) ◽  
pp. 981-988 ◽  
Author(s):  
Yung-An Lee ◽  
Pei-Yu Yang ◽  
Shau-Chang Huang

Xanthomonads were detected by using the Xan-D(CCF) medium from the brassica seeds, and their pathogenicity was determined by plant inoculation tests. It was found that some seed lots were infested with Xanthomonas campestris pv. campestris, some with X. campestris pv. raphani, and some with nonpathogenic xanthomonads. The nonpathogenic xanthomonad strains were identified as X. campestris, and the multilocus sequence analysis showed that the nonpathogenic X. campestris strains were grouped together with pathogenic X. campestris, but not with nonpathogenic strains of X. arboricola. In addition, all isolated X. campestris pv. campestris and X. campestris pv. raphani strains were positive in the hrpF-PCR, but the nonpathogenic strains were negative. It was further found that nonpathogenic X. campestris strain nE1 does not contain the entire pathogenicity island (hrp gene cluster; type III secretion system) and all type III effector protein genes based on the whole genome sequence analyses. The nonpathogenic X. campestris strain nE1 could acquire the entire pathogenicity island from the endemic X. campestris pv. campestris and X. campestris pv. raphani strains by conjugation, but type III effector genes were not cotransferred. The studies showed that the nonpathogenic X. campestris strains indeed exist on the brassica seeds, but it could be differentiated by the PCR assays on the hrp and type III effector genes. Nevertheless, the nonpathogenic X. campestris strains cannot be ignored because they may be potential gene resources to increase genetic diversity in the endemic pathogenic X. campestris pv. campestris and X. campestris pv. raphani strains.


2004 ◽  
Vol 53 (11) ◽  
pp. 1145-1149 ◽  
Author(s):  
Rosanna Mundy ◽  
Claire Jenkins ◽  
Jun Yu ◽  
Henry Smith ◽  
Gad Frankel

Enterohaemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli are important diarrhoeagenic pathogens; infection is dependent on translocation of a number of type III effector proteins. Until recently all the known effectors were encoded on the LEE pathogenicity island, which also encodes the adhesin intimin and the type III secretion apparatus. Recently, a novel non-LEE effector protein, EspI/NleA, which is required for full virulence in vivo and is encoded on a prophage, was identified. The aim of this study was to determine the distribution of espI among clinical EHEC and EPEC isolates. espI was detected in 86 % and 53 % of LEE+ EHEC and EPEC strains, respectively. Moreover, the espI gene was more commonly found in patients suffering from a more severe disease.


PLoS ONE ◽  
2008 ◽  
Vol 3 (5) ◽  
pp. e2178 ◽  
Author(s):  
Brit Winnen ◽  
Markus C. Schlumberger ◽  
Alexander Sturm ◽  
Kaspar Schüpbach ◽  
Stefan Siebenmann ◽  
...  

2010 ◽  
Vol 59 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Ranjana Tripathi ◽  
Santa Singh Naorem ◽  
Chetna Dureja ◽  
Swati Haldar ◽  
Alok K. Mondal ◽  
...  

VopF, a type III effector protein, has been identified as a contributory factor to the intestinal colonization of type III secretion system-positive, non-O1, non-O139 Vibrio cholerae strains. To gain more insight into the function of VopF, a yeast model was developed. Using this model, it was found that ectopic expression of VopF conferred toxicity in yeast.


2008 ◽  
Vol 17 (12) ◽  
pp. 2167-2173 ◽  
Author(s):  
Jamaine Davis ◽  
Jiawei Wang ◽  
Joseph E. Tropea ◽  
Di Zhang ◽  
Zbigniew Dauter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document