scholarly journals Crystal Structures of the BlaI Repressor from Staphylococcus aureus and Its Complex with DNA: Insights into Transcriptional Regulation of the bla and mec Operons

2005 ◽  
Vol 187 (5) ◽  
pp. 1833-1844 ◽  
Author(s):  
Martin K. Safo ◽  
Qixun Zhao ◽  
Tzu-Ping Ko ◽  
Faik N. Musayev ◽  
Howard Robinson ◽  
...  

ABSTRACT The 14-kDa BlaI protein represses the transcription of blaZ, the gene encoding β-lactamase. It is homologous to MecI, which regulates the expression of mecA, the gene encoding the penicillin binding protein PBP2a. These genes mediate resistance to β-lactam antibiotics in staphylococci. Both repressors can bind either bla or mec DNA promoter-operator sequences. Regulated resistance genes are activated via receptor-mediated cleavage of the repressors. Cleavage is induced when β-lactam antibiotics bind the extramembrane sensor of the sensor-transducer signaling molecules, BlaR1 or MecR1. The crystal structures of BlaI from Staphylococcus aureus, both in free form and in complex with 32 bp of DNA of the mec operator, have been determined to 2.0- and 2.7-Å resolutions, respectively. The structure of MecI, also in free form and in complex with the bla operator, has been previously reported. Both repressors form homodimers, with each monomer composed of an N-terminal DNA binding domain of winged helix-turn-helix topology and a C-terminal dimerization domain. The structure of BlaI in complex with the mec operator shows a protein-DNA interface that is conserved between both mec and bla targets. The recognition helix α3 interacts specifically with the conserved TACA/TGTA DNA binding motif. BlaI and, probably, MecI dimers bind to opposite faces of the mec DNA double helix in an up-and-down arrangement, whereas MecI and, probably, BlaI dimers bind to the same DNA face of bla promoter-operator DNA. This is due to the different spacing of mec and bla DNA binding sites. Furthermore, the flexibility of the dimeric proteins may make the C-terminal proteolytic cleavage site more accessible when the repressors are bound to DNA than when they are in solution, suggesting that the induction cascade involves bound rather than free repressor.

2019 ◽  
Vol 47 (21) ◽  
pp. 11418-11429 ◽  
Author(s):  
Zhenlin Ouyang ◽  
Fang Zheng ◽  
Jared Y Chew ◽  
Yingmei Pei ◽  
Jinhong Zhou ◽  
...  

Abstract Staphylococcus aureus ArlRS is a key two-component regulatory system necessary for adhesion, biofilm formation, and virulence. The response regulator ArlR consists of a C-terminal DNA-binding effector domain and an N-terminal receiver domain that is phosphorylated by ArlS, the cognate transmembrane sensor histidine kinase. We demonstrate that the receiver domain of ArlR adopts the canonical α5β5 response regulator assembly, which dimerizes upon activation, using beryllium trifluoride as an aspartate phosphorylation mimic. Activated ArlR recognizes a 20-bp imperfect inverted repeat sequence in the ica operon, which is involved in intercellular adhesion polysaccharide production. Crystal structures of the inactive and activated forms reveal that activation induces a significant conformational change in the β4-α4 and β5-α5-connecting loops, in which the α4 and α5 helices constitute the homodimerization interface. Crystal structures of the DNA-binding ArlR effector domain indicate that it is able to dimerize via a non-canonical β1–β2 hairpin domain swapping, raising the possibility of a new mechanism for signal transduction from the receiver domain to effector domain. Taken together, the current study provides structural insights into the activation of ArlR and its recognition, adding to the diversity of response regulation mechanisms that may inspire novel antimicrobial strategies specifically targeting Staphylococcus.


2020 ◽  
Vol 29 (9) ◽  
pp. 1417-1425 ◽  
Author(s):  
Claire E L Smith ◽  
Laura L E Whitehouse ◽  
James A Poulter ◽  
Laura Wilkinson Hewitt ◽  
Fatima Nadat ◽  
...  

Abstract Amelogenesis is the process of enamel formation. For amelogenesis to proceed, the cells of the inner enamel epithelium (IEE) must first proliferate and then differentiate into the enamel-producing ameloblasts. Amelogenesis imperfecta (AI) is a heterogeneous group of genetic conditions that result in defective or absent tooth enamel. We identified a 2 bp variant c.817_818GC>AA in SP6, the gene encoding the SP6 transcription factor, in a Caucasian family with autosomal dominant hypoplastic AI. The resulting missense protein change, p.(Ala273Lys), is predicted to alter a DNA-binding residue in the first of three zinc fingers. SP6 has been shown to be crucial to both proliferation of the IEE and to its differentiation into ameloblasts. SP6 has also been implicated as an AI candidate gene through its study in rodent models. We investigated the effect of the missense variant in SP6 (p.(Ala273Lys)) using surface plasmon resonance protein-DNA binding studies. We identified a potential SP6 binding motif in the AMBN proximal promoter sequence and showed that wild-type (WT) SP6 binds more strongly to it than the mutant protein. We hypothesize that SP6 variants may be a very rare cause of AI due to the critical roles of SP6 in development and that the relatively mild effect of the missense variant identified in this study is sufficient to affect amelogenesis causing AI, but not so severe as to be incompatible with life. We suggest that current AI cohorts, both with autosomal recessive and dominant disease, be screened for SP6 variants.


PLoS ONE ◽  
2016 ◽  
Vol 11 (7) ◽  
pp. e0158793 ◽  
Author(s):  
Veronika Papp-Kádár ◽  
Judit Eszter Szabó ◽  
Kinga Nyíri ◽  
Beata G. Vertessy

2014 ◽  
Vol 197 (1) ◽  
pp. 188-200 ◽  
Author(s):  
April Killikelly ◽  
Meredith A. Benson ◽  
Elizabeth A. Ohneck ◽  
Jared M. Sampson ◽  
Jean Jakoncic ◽  
...  

Staphylococcus aureusis responsible for a large number of diverse infections worldwide. In order to support its pathogenic lifestyle,S. aureushas to regulate the expression of virulence factors in a coordinated fashion. One of the central regulators of theS. aureusvirulence regulatory networks is the transcription factor repressor of toxin (Rot). Rot plays a key role in regulatingS. aureusvirulence through activation or repression of promoters that control expression of a large number of critical virulence factors. However, the mechanism by which Rot mediates gene regulation has remained elusive. Here, we have determined the crystal structure of Rot and used this information to probe the contribution made by specific residues to Rot function. Rot was found to form a dimer, with each monomer harboring a winged helix-turn-helix (WHTH) DNA-binding motif. Despite an overall acidic pI, the asymmetric electrostatic charge profile suggests that Rot can orient the WHTH domain to bind DNA. Structure-based site-directed mutagenesis studies demonstrated that R91, at the tip of the wing, plays an important role in DNA binding, likely through interaction with the minor groove. We also found that Y66, predicted to bind within the major groove, contributes to Rot interaction with target promoters. Evaluation of Rot binding to different activated and repressed promoters revealed that certain mutations on Rot exhibit promoter-specific effects, suggesting for the first time that Rot differentially interacts with target promoters. This work provides insight into a precise mechanism by which Rot controls virulence factor regulation inS. aureus.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Satyakrishna Pentakota ◽  
Keda Zhou ◽  
Charlotte Smith ◽  
Stefano Maffini ◽  
Arsen Petrovic ◽  
...  

Centromere protein (CENP) A, a histone H3 variant, is a key epigenetic determinant of chromosome domains known as centromeres. Centromeres nucleate kinetochores, multi-subunit complexes that capture spindle microtubules to promote chromosome segregation during mitosis. Two kinetochore proteins, CENP-C and CENP-N, recognize CENP-A in the context of a rare CENP-A nucleosome. Here, we reveal the structural basis for the exquisite selectivity of CENP-N for centromeres. CENP-N uses charge and space complementarity to decode the L1 loop that is unique to CENP-A. It also engages in extensive interactions with a 15-base pair segment of the distorted nucleosomal DNA double helix, in a position predicted to exclude chromatin remodelling enzymes. Besides CENP-A, stable centromere recruitment of CENP-N requires a coincident interaction with a newly identified binding motif on nucleosome-bound CENP-C. Collectively, our studies clarify how CENP-N and CENP-C decode and stabilize the non-canonical CENP-A nucleosome to enforce epigenetic centromere specification and kinetochore assembly.


2001 ◽  
Vol 183 (6) ◽  
pp. 2025-2031 ◽  
Author(s):  
Wises Namwat ◽  
Chang-Kwon Lee ◽  
Hiroshi Kinoshita ◽  
Yasuhiro Yamada ◽  
Takuya Nihira

ABSTRACT A gene designated varR (for virginiaeantibiotic resistance regulator) was identified in Streptomyces virginiae 89 bp downstream of a varS gene encoding a virginiamycin S (VS)-specific transporter. The deduced varRproduct showed high homology to repressors of the TetR family with a conserved helix-turn-helix DNA binding motif. Purified recombinant VarR protein was present as a dimer in vitro and showed clear DNA binding activity toward the varS promoter region. This binding was abolished by the presence of VS, suggesting that VarR regulates transcription of varS in a VS-dependent manner. Northern blot analysis revealed that varR was cotranscribed with upstream varS as a 2.4-kb transcript and that VS acted as an inducer of bicistronic transcription. Deletion analysis of thevarS promoter region clarified two adjacent VarR binding sites in the varS promoter.


2021 ◽  
Author(s):  
Soumen Khan ◽  
Saurabh J. Pradhan ◽  
Guillaume Giraud ◽  
Françoise Bleicher ◽  
Rachel Paul ◽  
...  

All Hox proteins are known to recognize, in vitro, similar DNA-binding sites containing a TAAT core sequence. This poor DNA-binding specificity is in sharp contrast with their specific functions in vivo. Here we report a new binding motif with TAAAT core sequence to which the Hox protein Ultrabithorax (Ubx) binds with higher affinity and specificity. Using transgenic and luciferase assays, we show that this new motif is critical for Ubx-mediated regulation of a target gene in Drosophila melanogaster. Interestingly, this new motif with TAAAT core sequences is not associated with the targets of Ubx in the honeybee, Apis mellifera, wherein hindwings are nearly identical to the forewings. We show that introduction of TAAAT motif in the place of TAAT motif is sufficient to bring an enhancer of a wing-promoting gene of A. mellifera under the regulation of Ubx. Our results, thus, suggest that binding motifs with a TAAAT core sequence may help identify functionally relevant direct targets of Ubx in D. melanogaster and the emergence of these binding sites may be crucial for Hox-mediated morphological changes during insect evolution.


2014 ◽  
Vol 70 (6) ◽  
pp. 1743-1757 ◽  
Author(s):  
Kevin Pröpper ◽  
Kathrin Meindl ◽  
Massimo Sammito ◽  
Birger Dittrich ◽  
George M. Sheldrick ◽  
...  

Protein–DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein–DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite the fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein–DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution programARCIMBOLDOfor the solution of protein–DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the programPhaserand density modification with the programSHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimalARCIMBOLDOstrategy for the solution of this class of structures.


Sign in / Sign up

Export Citation Format

Share Document