scholarly journals Comparison of Four Molecular In Vitro Diagnostic Assays for the Detection of SARS-CoV-2 in Nasopharyngeal Specimens

2020 ◽  
Vol 58 (8) ◽  
Author(s):  
Wei Zhen ◽  
Ryhana Manji ◽  
Elizabeth Smith ◽  
Gregory J. Berry

ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel human coronavirus that causes coronavirus disease 2019 (COVID-19), was first discovered in December 2019 as the cause of an outbreak of pneumonia in the city of Wuhan, Hubei province, China. The clinical presentation of COVID-19 is fairly nonspecific, and symptoms overlap those of other seasonal respiratory infections concurrently circulating in the population. Furthermore, it is estimated that up to 80% of infected individuals experience mild symptoms or are asymptomatic, confounding efforts to reliably diagnose COVID-19 empirically. To support infection control measures, there is an urgent need for rapid and accurate molecular diagnostics to identify COVID-19-positive patients. In the present study, we evaluated the analytical sensitivity and clinical performance of the following four SARS-CoV-2 molecular diagnostic assays granted emergency use authorization by the FDA using nasopharyngeal swabs from symptomatic patients: the New York SARS-CoV-2 Real-time Reverse Transcriptase (RT)-PCR Diagnostic Panel (modified CDC) assay, the Simplexa COVID-19 Direct (Diasorin Molecular) assay, GenMark ePlex SARS-CoV-2 (GenMark) assay, and the Hologic Panther Fusion SARS-CoV-2 (Hologic) assay. This information is crucial for both laboratories and clinical teams as decisions on which testing platform to implement are made.

Author(s):  
Wei Zhen ◽  
Ryhana Manji ◽  
Elizabeth Smith ◽  
Gregory J. Berry

AbstractThe novel human coronavirus SARS-CoV-2 was first discovered in the city of Wuhan, Hubei province, China, causing an outbreak of pneumonia in January 2020. As of April 10, 2020, the virus has rapidly disseminated to over 200 countries and territories, causing more than 1.6 million confirmed cases of COVID-19 and 97,000 deaths worldwide. The clinical presentation of COVID-19 is fairly non-specific, and symptoms overlap with other seasonal respiratory infections concurrently circulating in the population. Further, it is estimated that up to 80% of infected individuals experience mild symptoms or are asymptomatic, confounding efforts to reliably diagnose COVID-19 empirically. To support infection control measures, there is an urgent need for rapid and accurate molecular diagnostics to identify COVID-19 positive patients. In the present study, we have evaluated the analytical sensitivity and clinical performance of four SARS-CoV-2 molecular diagnostic assays granted Emergency Use Authorization by the FDA using nasopharyngeal swabs from symptomatic patients. This information is crucial for both laboratories and clinical teams, as decisions on which testing platform to implement are made.


2020 ◽  
Vol 58 (8) ◽  
Author(s):  
Wei Zhen ◽  
Elizabeth Smith ◽  
Ryhana Manji ◽  
Deborah Schron ◽  
Gregory J. Berry

ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread across the globe. As part of the worldwide response, many molecular diagnostic platforms have been granted emergency use authorization (EUA) by the Food and Drug Administration (FDA) to identify SARS-CoV-2 positive patients. Our objective was to evaluate three sample-to-answer molecular diagnostic platforms (Cepheid Xpert Xpress SARS-CoV-2 [Xpert Xpress], Abbott ID NOW COVID-19 [ID NOW], and GenMark ePlex SARS-CoV-2 Test [ePlex]) to determine analytical sensitivity, clinical performance, and workflow for the detection of SARS-CoV-2 in nasopharyngeal swabs from 108 symptomatic patients. We found that Xpert Xpress had the lowest limit of detection (100% detection at 100 copies/ml), followed by ePlex (100% detection at 1,000 copies/ml), and ID NOW (20,000 copies/ml). Xpert Xpress also had highest positive percent agreement (PPA) compared to our reference standard (98.3%) followed by ePlex (91.4%) and ID NOW (87.7%). All three assays showed 100% negative percent agreement (NPA). In the workflow analysis, ID NOW produced the lowest time to result per specimen (∼17 min) compared to Xpert Xpress (∼46 min) and ePlex (∼1.5 h), but what ID NOW gained in rapid results, it lost in analytical and clinical performance. ePlex had the longest time to results and showed a slight improvement in PPA over ID NOW. Information about the clinical and analytical performance of these assays, as well as workflow, will be critical in making informed and timely decisions on testing platforms.


2019 ◽  
Vol 57 (8) ◽  
Author(s):  
Brett Kirkconnell ◽  
Barbara Weinbaum ◽  
Katherine Santos ◽  
Trisha Le Nguyen ◽  
Bryan Vinluan ◽  
...  

ABSTRACTMycoplasma genitaliumis a sexually transmitted bacterium linked to adverse sexual and reproductive health outcomes in women and men.M. genitaliumis difficult to culture, and in the absence of validated amplified molecular methods for diagnosis of infection, there is no reference standard available for use as a comparator for the validation of newM. genitaliumdiagnostic tests. We evaluated the analytical and clinical performance of three transcription-mediated amplification (TMA) tests forM. genitalium, each targeting unique rRNA sequences, for use as a composite comparator for clinical validation of the AptimaMycoplasma genitalium(AMG) assay, anin vitrodiagnostic (IVD) TMA test that targets 16 s rRNA ofM. genitalium. Analytical sensitivity, specificity, and strain inclusivity of all four TMA tests were determined using nine laboratory strains ofM. genitaliumand 56 nontarget bacteria, protozoa, and viruses. Analytical sensitivity of the tests forM. genitaliumranged from 0.017 to 0.040 genome equivalents/ml. None of the nontarget organisms evaluated cross-reacted with any test. A composite comparator reference standard consisting of the 3 alternate (Alt) TMA tests was used to evaluate the clinical performance of the AMG assay by testing residual vaginal swab, female urine, and male urine specimens obtained from 1,400 adult subjects from three U.S. clinical sites. Using this reference standard to establish infected specimen status, the sensitivity, specificity, and overall agreement of the AMG IVD assay were 100%, 99.9%, and 99.9%, respectively. These results demonstrate the utility of molecular composite reference standard methodology for the clinical validation of future IVD tests for this organism.


2021 ◽  
Author(s):  
Petra Mlcochova ◽  
Steven Kemp ◽  
Mahesh Shanker Dhar ◽  
Guido Papa ◽  
Bo Meng ◽  
...  

Abstract The SARS-CoV-2 B.1.617.2 (Delta) variant was first identified in the state of Maharashtra in late 2020 and has spread throughout India, displacing the B.1.1.7 (Alpha) variant and other pre-existing lineages. Mathematical modelling indicates that the growth advantage is most likely explained by a combination of increased transmissibility and immune evasion. Indeed in vitro, the delta variant is less sensitive to neutralising antibodies in sera from recovered individuals, with higher replication efficiency as compared to the Alpha variant. In an analysis of vaccine breakthrough in over 100 healthcare workers across three centres in India, the Delta variant not only dominates vaccine-breakthrough infections with higher respiratory viral loads compared to non-delta infections (Ct value of 16.5 versus 19), but also generates greater transmission between HCW as compared to B.1.1.7 or B.1.617.1 (p=0.02). In vitro, the Delta variant shows 8 fold approximately reduced sensitivity to vaccine-elicited antibodies compared to wild type Wuhan-1 bearing D614G. Serum neutralising titres against the SARS-CoV-2 Delta variant were significantly lower in participants vaccinated with ChadOx-1 as compared to BNT162b2 (GMT 3372 versus 654, p<0001). These combined epidemiological and in vitro data indicate that the dominance of the Delta variant in India has been most likely driven by a combination of evasion of neutralising antibodies in previously infected individuals and increased virus infectivity. Whilst severe disease in fully vaccinated HCW was rare, breakthrough transmission clusters in hospitals associated with the Delta variant are concerning and indicate that infection control measures need continue in the post-vaccination era.


2020 ◽  
Author(s):  
Anna Bershteyn ◽  
Hae-Young Kim ◽  
Jessica McGillen ◽  
R. Scott Braithwaite

AbstractIntroductionNew York City (NYC) has the largest public school system in the United States (US). During the SARS-CoV-2 pandemic, NYC was the first major US city to open schools for in-person learning in the 2020-2021 academic year. Several policies were implemented to reduce the risk of in-school transmission, including infection control measures (facemasks, physical distancing, enhanced indoor ventilation, cohorting of small groups, and hand hygiene), option of all-remote instruction, alternative options for how class schedules would rotate in-person and remote instruction, daily symptom screening, and testing 10-20% of students and staff weekly or monthly depending on local case rates. We sought to determine which of these policies had the greatest impact on reducing the risk of in-school transmission.MethodsWe evaluated the impact of each policy by referring to global benchmarks for the secondary attack rate (SAR) of SARS-CoV-2 in school settings and by simulating the potential for transmission in NYC’s rotating cohort schedules, in which teachers could act as “bridges” across rotating cohorts. We estimated the impact of (1) infection control measures, (2) providing an option of all-remote instruction, (3) choice of class scheduling for in-person learners, (4) daily symptom screening, (5) testing to curtail transmission, and (6) testing to identify school outbreaks. Each policy was assessed independently of other policies, with the exception of symptom screening and random testing, which were assessed both independently and jointly.ResultsAmong the policies analyzed, the greatest transmission reduction was associated with the infection control measures, followed by small class cohorts with an option for all-remote instruction, symptom screening, and finally randomly testing 10-20% of school attendees. Assuming adult staff are the primary source of within-school SARS-CoV-2 transmission, weekly testing of staff could be at least as effective as symptom screening, and potentially more so if testing days occur in the beginning of the workweek with results available by the following day. A combination of daily symptom screening and testing on the first workday of each week could reduce transmission by 70%.ConclusionsAdherence to infection control is the highest priority for safe school re-opening. Further transmission reduction can be achieved through small rotating class cohorts with an option for remote learning, widespread testing at the beginning of the work week, and daily symptom screening and self-isolation. Randomly testing 10-20% of attendees weekly or monthly does not meaningfully curtail transmission and may not detect outbreaks before they have spread beyond a handful of individuals. School systems considering re-opening during the SARS-CoV-2 pandemic or similarly virulent respiratory disease outbreaks should consider these relative impacts when setting policy priorities.


2020 ◽  
Vol 154 (2) ◽  
pp. 201-207 ◽  
Author(s):  
Kendall Cradic ◽  
Marie Lockhart ◽  
Patrick Ozbolt ◽  
Lisa Fatica ◽  
Lorie Landon ◽  
...  

Abstract Objectives To evaluate the clinical performance of 3 molecular assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods We used 184 nasopharyngeal swab specimens to compare Abbott ID NOW COVID-19 (Abbott ID NOW), DiaSorin Molecular Simplexa COVID-19 Direct (DiaSorin Simplexa), and Roche cobas 6800 SARS-CoV-2 (Roche cobas) assays. In a separate analysis, 3 specimens (nasopharyngeal, oropharyngeal, and nasal) were collected from 182 unique patients presenting to the emergency department with suspicion of coronavirus disease 2019 and were tested utilizing Abbott ID NOW. To further characterize each assay, relative limits of detection were evaluated utilizing positive nasopharyngeal patient samples. Results The positive percent agreement was 91% (95% confidence interval [CI], 0.76-0.97) for Abbott ID NOW and 100% (95% CI, 0.90-1.00) for DiaSorin Simplexa and Roche cobas. The negative percent agreement was 100% (95% CI, 0.98-1.00) for all 3 assays. All swab types tested with the Abbott assay produced concordant results. Polymerase chain reaction assays had approximately 10 to 100 times lower limits of detection than Abbott ID NOW. Conclusions Based on these evaluations, a multiplatform testing approach is proposed, depending on patient population and assay sensitivity, to address testing needs during a public health emergency.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Esam I. Azhar ◽  
Anwar M. Hashem ◽  
Sherif A. El-Kafrawy ◽  
Sayed Sartaj Sohrab ◽  
Asad S. Aburizaiza ◽  
...  

ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel betacoronavirus that has been circulating in the Arabian Peninsula since 2012 and causing severe respiratory infections in humans. While bats were suggested to be involved in human MERS-CoV infections, a direct link between bats and MERS-CoV is uncertain. On the other hand, serological and virological data suggest dromedary camels as the potential animal reservoirs of MERS-CoV. Recently, we isolated MERS-CoV from a camel and its infected owner and provided evidence for the direct transmission of MERS-CoV from the infected camel to the patient. Here, we extend this work and show that identical MERS-CoV RNA fragments were detected in an air sample collected from the same barn that sheltered the infected camel in our previous study. These data indicate that the virus was circulating in this farm concurrently with its detection in the camel and in the patient, which warrants further investigations for the possible airborne transmission of MERS-CoV. IMPORTANCE This work clearly highlights the importance of continuous surveillance and infection control measures to control the global public threat of MERS-CoV. While current MERS-CoV transmission appears to be limited, we advise minimal contact with camels, especially for immunocompromised individuals, and the use of appropriate health, safety, and infection prevention and control measures when dealing with infected patients. Also, detailed clinical histories of any MERS-CoV cases with epidemiological and laboratory investigations carried out for any animal exposure must be considered to identify any animal source.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1314
Author(s):  
Eduarda Carvalho-Correia ◽  
Carla Calçada ◽  
Fernando Branca ◽  
Nuria Estévez-Gómez ◽  
Loretta De Chiara ◽  
...  

Extensive transmission of SARS-CoV-2 during the COVID-19 pandemic allowed the generation of thousands of mutations within its genome. While several of these become rare, others largely increase in prevalence, potentially jeopardizing the sensitivity of PCR-based diagnostics. Taking advantage of SARS-CoV-2 genomic knowledge, we designed a one-step probe-based multiplex RT-qPCR (OmniSARS2) to simultaneously detect short fragments of the SARS-CoV-2 genome in ORF1ab, E gene and S gene. Comparative genomics of the most common SARS-CoV-2 lineages, other human betacoronavirus and alphacoronavirus, was the basis for this design, targeting both highly conserved regions across SARS-CoV-2 lineages and variable or absent in other Coronaviridae viruses. The highest analytical sensitivity of this method for SARS-CoV-2 detection was 94.2 copies/mL at 95% detection probability (~1 copy per total reaction volume) for the S gene assay, matching the most sensitive available methods. In vitro specificity tests, performed using reference strains, showed no cross-reactivity with other human coronavirus or common pathogens. The method was compared with commercially available methods and detected the virus in clinical samples encompassing different SARS-CoV-2 lineages, including B.1, B.1.1, B.1.177 or B.1.1.7 and rarer lineages. OmniSARS2 revealed a sensitive and specific viral detection method that is less likely to be affected by lineage evolution oligonucleotide–sample mismatch, of relevance to ensure the accuracy of COVID-19 molecular diagnostic methods.


Sign in / Sign up

Export Citation Format

Share Document