scholarly journals Correlation of Overexpression of Efflux Pump Genes with Antibiotic Resistance in Escherichia coli Strains Clinically Isolated from Urinary Tract Infection Patients

2010 ◽  
Vol 49 (1) ◽  
pp. 189-194 ◽  
Author(s):  
T. Yasufuku ◽  
K. Shigemura ◽  
T. Shirakawa ◽  
M. Matsumoto ◽  
Y. Nakano ◽  
...  
1970 ◽  
Vol 24 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Taslima Taher Lina ◽  
Sabita Rezwana Rahman ◽  
Donald James Gomes

Antibiotic resistance in urinary tract infection (UTI) is a growing public health problem in the world. In this study, a total of 182 uropathogens were isolated from patients with symptoms of urinary tract infection (UTI). Escherichia coli (88%) was the most prevalent isolate, while Klebsiella pneumoniae was recovered from 12% cases. The male/female ratio was 1:3. About 56% female and 51% male patients belonged to the age group >40 years. The antibiotic resistance rates of the isolates to fifteen different drugs were investigated. E. coli and K. pneumoniae showed variable pattern of susceptibility. The percentage of resistance to different drugs was higher in E. coli isolates compared to that of K. pneumoniae. Among the total number of isolates about 87% were resistant to at least three commonly used antibiotics. All the isolates were sensitive to imipenem. Analysis of the plasmid DNA had shown that the plasmid pattern was very diverse in both E. coli and K. pneumoniae. All the isolates contained multiple numbers of plasmid ranging from 1.0 to >140 MDa. Middleranged plasmids (30 to 80 MDa), the transferable resistance plasmids, were found to be present in 86% E. coli and 85% K. pneumoniae isolates. The strong association observed between plasmid profiles and drug resistance patterns suggest that plasmids other than the common plasmids may have epidemiological significance. The presence of class 1 and class 2 integrons were also investigated. A relatively high occurrence of class 1 integrons, that are associated with lateral transfer of antibacterial resistance genes, was observed in K. pneumoniae (88%) than in E. coli isolates (54%). Class 2 integrons were not found in any of the E. coli and K. pneumoniae isolates. These results show the high rate of drug resistance and the presence of high rate of transferable elements in these MDR isolates. Keywords: Uropathogens, Escherichia coli, Klebsiella pneumoniae, Multidrug-resistant (MDR) bacteria, Plasmid profiles, IntegronsDOI: http://dx.doi.org/10.3329/bjm.v24i1.1231 Bangladesh J Microbiol, Volume 24, Number 1, June 2007, pp 19-23


Author(s):  
Mohamed Kettani Halabi ◽  
Fatima Azzahra Lahlou ◽  
Idrissa Diawara ◽  
Younes El Adouzi ◽  
Rabiaa Marnaoui ◽  
...  

Extended-spectrum β-lactamases producing Escherichia coli (ESBL-EC) lend resistance to most β-lactam antibiotics. Because of limited treatment options, ESBL-EC infections are generally more difficult to treat, leading to higher hospital costs, reduced rates of microbiological and clinical responses, and a threat to the patient’s life. This study aimed to determine the antibiotic resistance pattern of ESBL-EC isolated from patients with urinary tract infection in Morocco. This retrospective laboratory-based study was conducted at Cheikh Khalifa International University Hospital, Casablanca, from January 2016 to June 2019. A total of 670 urine samples were collected from urinary tract infection patients and processed by standard microbiological methods. In vitro susceptibility testing to different antibiotics of all identified isolates of Escherichia coli (E. coli) was performed following Kirby–Bauer’s disc diffusion method on Mueller–Hinton Agar according to the EUCAST standards. The reviewing of ESBL-EC was confirmed by the appearance of a characteristically shaped zone referred to as a “champagne cork” using the Combined Disk Test. Among a total of 438 E. coli isolated from nonrepetitive urine samples, two hundred fifty-nine (59%) were ESBL-EC, of which 200 (77%) were isolated from adult patients (over the age of 50) and the majority were female. All ESBL-EC isolates were resistant to third-generation cephalosporin and quinolones and sensitive to carbapenem and fosfomycin. Knowledge of antimicrobial resistance patterns in ESBL-EC, the major pathogen associated with urinary tract infection, is indispensable as a guide in choosing empirical antimicrobial treatment.


Heliyon ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. e04161 ◽  
Author(s):  
Ahmed Hossain ◽  
Saeem Arafat Hossain ◽  
Aneeka Nawar Fatema ◽  
Abrar Wahab ◽  
Mohammad Morshad Alam ◽  
...  

2017 ◽  
Vol 50 (4) ◽  
pp. 478-485 ◽  
Author(s):  
Gloria Luz Paniagua-Contreras ◽  
Eric Monroy-Pérez ◽  
José Raymundo Rodríguez-Moctezuma ◽  
Pablo Domínguez-Trejo ◽  
Felipe Vaca-Paniagua ◽  
...  

Author(s):  
Nasrin Bahmani ◽  
Noshin Abdolmaleki ◽  
Afshin Bahmani

Background and Objectives: Urinary tract infection (UTI) is one of the most frequent infectious diseases which is caused by Gram-negative bacteria especially Escherichia coli. Multiple resistance to antimicrobial agents are increasing quickly in E. coli isolates and may complicate therapeutic strategies for UTI. The propose of this study was to determine the antibiotic resistance patterns and the multidrug-resistance (MDR) phenotypes in uropathogenic E. coli (UPEC). Materials and Methods: A total of 153 UPEC isolates were collected from both hospitalized patients (95 isolates) and outpatients (58 isolates) from March to October 2018. In order to determine the MDR among UPEC isolates, we have tested 15 antimicrobial agents on Muller Hinton agar by the disk diffusion method. Results: The percentage of MDR isolates (resistant to at least three drug classes such as fluoroquinolones, penicillins and cephalosporins) was 55.5% in the hospitalized patients and the outpatients. Antibiotic resistance to ampicillin, ceftazidime, nalidixic acid and trimethoprim/ sulfamethoxazole was higher than 60%. Meropenem, Imipenem and norfloxacin indicated markedly greater activity (93.3%, 80% and 85.6%, respectively) than other antimicrobial agents. Conclusions: Urinary tract infection due to MDR E. coli may be difficult to treat empirically due to high resistance to commonly used antibiotics, so, empirical antibiotic treatment should be reviewed periodically at local studies.


Sign in / Sign up

Export Citation Format

Share Document