scholarly journals Rapid Identification of Candida Species from Positive Blood Cultures by Use of the FilmArray Blood Culture Identification Panel

2018 ◽  
Vol 56 (12) ◽  
Author(s):  
Andrew E. Simor ◽  
Vanessa Porter ◽  
Samira Mubareka ◽  
Marc Chouinard ◽  
Kevin Katz ◽  
...  
2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S148-S149
Author(s):  
Kristina B Pierce ◽  
Rebecca Barr ◽  
Aubrie Hopper ◽  
Charlotte Bowerbank ◽  
Anne Shaw ◽  
...  

Abstract Background Studies show a rising annual incidence of severe sepsis, with bloodstream infections continuing to impact children. Rapid identification of causative agents and timely administration of targeted therapy can positively impact patient outcomes and improve antibiotic stewardship. The BioFire® Blood Culture Identification 2 (BCID2) Panel (BioFire Diagnostics, LLC), an updated version of the FDA-cleared BioFire® FilmArray® Blood Culture Identification (BCID) Panel, designed for use on positive blood cultures (PBCs), assesses 43 analytes, including 17 novel analytes (8 bacterial, 2 fungal, and 7 antimicrobial resistance genes), with a similar turnaround time. Methods De-identified residual PBCs for which clinician-ordered testing per standard of care (SoC) had been performed were enrolled and tested with an Investigation-Use-Only version of the BCID2 Panel. Only one positive bottle per patient was enrolled. Results of BCID2 and BCID were compared. Results 116 PBCs (48 aerobic and 68 anaerobic) were evaluated using the BioFire BCID2 Panel and results were compared to the BioFire BCID Panel. Of the 116 cases, 103 were positive on both the BioFire BCID2 Panel and the BioFire BCID Panel. Ten cases were negative on both tests. While the two panels showed 97% agreement, three cases were discrepant. Using culture (SoC) as the tiebreaker, two cases were false positive and one case was false negative on the BioFire BCID Panel. In all three cases, results from culture and the BioFire BCID2 Panel were in agreement. As expected, no organisms were detected on the BioFire BCID2 Panel in PBCs from 10% (12/116) of PBC bottles where culture identified only organisms that are not part of the panel menu. With the BioFire BCID2 Panel’s expanded platform, two cases identified as Enterobacteriaceae on the BioFire BCID Panel were identified to the genus level on the BioFire BCID2 Panel; 31 cases detected to the genus level on the BioFire BCID Panel were identified to the species level on the BioFire BCID2 Panel. Conclusion Overall, the BioFire BCID2 Panel performed well against the BioFire BCID Panel for identification of bloodstream pathogens and provided additional discrimination of some pathogens to the genus or species level. Data presented are from assays that have not been cleared or approved for diagnostic use. Disclosures All Authors: No reported disclosures


2018 ◽  
Vol 67 (1) ◽  
pp. 103-107 ◽  
Author(s):  
Maria Szymankiewicz ◽  
Beata Nakonowska

The results of the FilmArray® Blood Culture Identification Panel (BCID) (BioFire Diagnostics) and the culture with susceptibility testing of 70 positive blood cultures from oncologic patients were compared. The multiplex PCR assay (BCID) identified 81 of the 83 isolates (97.6%), covered by the panel. The panel produced results in significantly shorter time than standard identification methods, when counted from receiving positive blood cultures bottles to the final results. It is an accurate method for the rapid identification of pathogens and resistance genes from blood culture in oncologic patients.


Author(s):  
Mokshanand Fhooblall ◽  
Fikile Nkwanyana ◽  
Koleka P. Mlisana

Background: There are presently many non-culture-based methods commercially available to identify organisms and antimicrobial susceptibility from blood culture bottles. Each platform has its benefits and limitations. However, there is a need for an improved system with minimal hands-on requirements and short run times.Objectives: In this study, the performance characteristics of the FilmArray® BCID Panel kit were evaluated to assess the efficiency of the kit against an existing system used for identification and antimicrobial susceptibility of organisms from blood cultures.Methods: Positive blood cultures that had initially been received from hospitalised patients of a large quaternary referral hospital in Durban, South Africa were processed as per routine protocol at its Medical Microbiology Laboratory. Positive blood cultures were processed on the FilmArray BCID Panel kit in parallel with the routine sample processing. Inferences were then drawn from results obtained.Results: Organism detection by the FilmArray BCID panel was accurate at 92.6% when organisms that were on the repertoire of the kit were considered, compared to the combination methods (reference method used in the study laboratory). Detection of the antimicrobial resistance markers provided by the panel and reference method demonstrated 100% consistency. Blood cultures with a single organism were accurately identified at 93.8% by FilmArray, while blood cultures with more than one organism were identified at 85.7%.Conclusion: The FilmArray BCID Panel kit is valuable for detection of organisms and markers of antibiotic resistance for an extensive range of organisms.


2016 ◽  
Vol 35 (5) ◽  
pp. e134-e138 ◽  
Author(s):  
Stephen T. J. Ray ◽  
Richard J. Drew ◽  
Fiona Hardiman ◽  
Barry Pizer ◽  
Andrew Riordan

2014 ◽  
Vol 52 (6) ◽  
pp. 2262-2264 ◽  
Author(s):  
J. Pardo ◽  
K. P. Klinker ◽  
S. J. Borgert ◽  
B. M. Butler ◽  
K. H. Rand ◽  
...  

2019 ◽  
Vol 57 (5) ◽  
Author(s):  
P. Ny ◽  
A. Ozaki ◽  
J. Pallares ◽  
P. Nieberg ◽  
A. Wong-Beringer

ABSTRACTA subset of bacteremia cases are caused by organisms not detected by a rapid-diagnostics platform, BioFire blood culture identification (BCID), with unknown clinical characteristics and outcomes. Patients with ≥1 positive blood culture over a 15-month period were grouped by negative (NB-PC) versus positive (PB-PC) BioFire BCID results and compared with respect to demographics, infection characteristics, antibiotic therapy, and outcomes (length of hospital stay [LOS] and in-hospital mortality). Six percent of 1,044 positive blood cultures were NB-PC. The overall mean age was 65 ± 22 years, 54% of the patients were male, and most were admitted from home; fewer NB-PC had diabetes (19% versus 31%,P= 0.0469), although the intensive care unit admission data were similar. Anaerobes were identified in 57% of the bacteremia cases from the NB-PC group by conventional methods:Bacteroidesspp. (30%),Clostridium(11%), andFusobacteriumspp. (8%). Final identification of the NB-PC pathogen was delayed by 2 days (P< 0.01) versus the PB-PC group. The sources of bacteremia were more frequently unknown for the NB-PC group (32% versus 11%,P< 0.01) and of pelvic origin (5% versus 0.1%,P< 0.01) compared to urine (31% versus 9%,P< 0.01) for the PB-PC patients. Fewer NB-PC patients received effective treatment before (68% versus 84%,P= 0.017) and after BCID results (82% versus 96%,P= 0.0048). The median LOS was similar (7 days), but more NB-PC patients died from infection (26% versus 8%,P< 0.01). Our findings affirm the need for the inclusion of anaerobes in BioFire BCID or other rapid diagnostic platforms to facilitate the prompt initiation of effective therapy for bacteremia.


Sign in / Sign up

Export Citation Format

Share Document