scholarly journals Detection of Neisseria meningitidis from Negative Blood Cultures and Cerebrospinal Fluid with the FilmArray Blood Culture Identification Panel

2014 ◽  
Vol 52 (6) ◽  
pp. 2262-2264 ◽  
Author(s):  
J. Pardo ◽  
K. P. Klinker ◽  
S. J. Borgert ◽  
B. M. Butler ◽  
K. H. Rand ◽  
...  
Author(s):  
Mokshanand Fhooblall ◽  
Fikile Nkwanyana ◽  
Koleka P. Mlisana

Background: There are presently many non-culture-based methods commercially available to identify organisms and antimicrobial susceptibility from blood culture bottles. Each platform has its benefits and limitations. However, there is a need for an improved system with minimal hands-on requirements and short run times.Objectives: In this study, the performance characteristics of the FilmArray® BCID Panel kit were evaluated to assess the efficiency of the kit against an existing system used for identification and antimicrobial susceptibility of organisms from blood cultures.Methods: Positive blood cultures that had initially been received from hospitalised patients of a large quaternary referral hospital in Durban, South Africa were processed as per routine protocol at its Medical Microbiology Laboratory. Positive blood cultures were processed on the FilmArray BCID Panel kit in parallel with the routine sample processing. Inferences were then drawn from results obtained.Results: Organism detection by the FilmArray BCID panel was accurate at 92.6% when organisms that were on the repertoire of the kit were considered, compared to the combination methods (reference method used in the study laboratory). Detection of the antimicrobial resistance markers provided by the panel and reference method demonstrated 100% consistency. Blood cultures with a single organism were accurately identified at 93.8% by FilmArray, while blood cultures with more than one organism were identified at 85.7%.Conclusion: The FilmArray BCID Panel kit is valuable for detection of organisms and markers of antibiotic resistance for an extensive range of organisms.


2019 ◽  
Vol 57 (5) ◽  
Author(s):  
P. Ny ◽  
A. Ozaki ◽  
J. Pallares ◽  
P. Nieberg ◽  
A. Wong-Beringer

ABSTRACTA subset of bacteremia cases are caused by organisms not detected by a rapid-diagnostics platform, BioFire blood culture identification (BCID), with unknown clinical characteristics and outcomes. Patients with ≥1 positive blood culture over a 15-month period were grouped by negative (NB-PC) versus positive (PB-PC) BioFire BCID results and compared with respect to demographics, infection characteristics, antibiotic therapy, and outcomes (length of hospital stay [LOS] and in-hospital mortality). Six percent of 1,044 positive blood cultures were NB-PC. The overall mean age was 65 ± 22 years, 54% of the patients were male, and most were admitted from home; fewer NB-PC had diabetes (19% versus 31%,P= 0.0469), although the intensive care unit admission data were similar. Anaerobes were identified in 57% of the bacteremia cases from the NB-PC group by conventional methods:Bacteroidesspp. (30%),Clostridium(11%), andFusobacteriumspp. (8%). Final identification of the NB-PC pathogen was delayed by 2 days (P< 0.01) versus the PB-PC group. The sources of bacteremia were more frequently unknown for the NB-PC group (32% versus 11%,P< 0.01) and of pelvic origin (5% versus 0.1%,P< 0.01) compared to urine (31% versus 9%,P< 0.01) for the PB-PC patients. Fewer NB-PC patients received effective treatment before (68% versus 84%,P= 0.017) and after BCID results (82% versus 96%,P= 0.0048). The median LOS was similar (7 days), but more NB-PC patients died from infection (26% versus 8%,P< 0.01). Our findings affirm the need for the inclusion of anaerobes in BioFire BCID or other rapid diagnostic platforms to facilitate the prompt initiation of effective therapy for bacteremia.


1978 ◽  
Vol 7 (4) ◽  
pp. 332-336
Author(s):  
L Rintala ◽  
H M Pollock

Tests of 25 strains of Neisseria meningitidis for sensitivity to sodium polyanethol sulfonate (SPS) showed that the sensitivity of strains varied with both inoculum size and SPS concentration. In Trypticase soy broth (TSB), 2 out of 13 strains were sensitive to 0.05% SPS, whereas 8 out of 13 strains were sensitive to the same concentration of SPS in brain heart infusion (BHI). In artificial blood cultures with six strains of meningococci, the addition of 10% defibrinated blood was found to eliminate the sensitivity of all six strains to SPS in BHI, but not of the two strains in TSB. Addition of 1.2% gelatin to artificial blood cultures eliminated the inhibitory effect of 0.05% SPS, whereas the addition of 1% yeast extract to blood cultures containing 0.025% or 0.05% SPS enhanced the inhibitory effect of this anticoagulant. None of the 13 strains tested was inhibited by 0.05% sodium amylosulfate in TSB or BHI alone or in artificial blood cultures with these media.


1977 ◽  
Vol 6 (1) ◽  
pp. 1-3 ◽  
Author(s):  
J Eng ◽  
E Holten

The inhibitory effect of sodium polyanethol sulfonate (0.05%) upon growth of Neisseria meningitidis was found to be neutralized by adding gelatin (l.1%) to the growth medium. The neutralizing effect was demonstrated in solid medium, as well as in nutrient broth for blood cultures. The findings parallel those of Wilkins and West (6) regarding gelatin neutralization of the inhibitory effect of sodium polyanethol sulfonate on Peptostreptococcus anaerobius.


2021 ◽  
Vol 26 (8) ◽  
pp. 802-808
Author(s):  
Lauren M. Puckett ◽  
Poonam Rajkotia ◽  
Lisa Coppola ◽  
Lori Baumgartner ◽  
Amity L. Roberts ◽  
...  

OBJECTIVE Identification of organisms directly from positive blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has the potential for improved clinical outcomes through earlier organism identification and shorter time to appropriate clinical intervention. The uses of this technology in pediatric patients and its impact in this patient population have not been well described. METHODS Direct from positive blood culture organism identification via MALDI-TOF was implemented in September 2019. A quality improvement project was performed to assess its impact on admissions for contaminant blood cultures and time to effective and optimal antimicrobials and clinical decision-making. A pre- and post-implementation retrospective review for consecutive September through February time periods, was conducted on patients with positive monomicrobial blood cultures. Statistics were evaluated using Mann-Whitney U and χ2 tests. RESULTS One hundred nineteen patients with 131 unique blood cultures (65 in pre- and 66 in post-implementation) were identified. Time to identification was shorter, median 35.4 hours (IQR, 22.7–54.3) versus 42.3 hours (IQR, 36.5–49) in post- and pre-groups, respectively (p = 0.02). Patients were less likely to be admitted for a contaminated blood culture in the post-implementation, 26% versus 11% in the pre-implementation (p = 0.03) group. In patients treated for bacteremia, there was a shorter time to optimal therapy from Gram stain reporting in the post-implementation (median 42.7 hours [IQR, 27.2–72]) versus pre-implementation (median 60.8 hours [IQR, 42.9–80.6]) (p = 0.03). CONCLUSIONS Direct from positive blood culture identification by MALDI-TOF decreased time to effective and optimal antimicrobials and decreased unnecessary admission in pediatric patients for contaminated blood cultures.


PEDIATRICS ◽  
1987 ◽  
Vol 80 (1) ◽  
pp. 63-67 ◽  
Author(s):  
T. Dennis Sullivan ◽  
Leonard J. LaScolea

The relationship between the magnitude of bacteremia due to Neisseria meningitidis and the clinical diagnosis was determined for 43 children who had fever in the presence or absence of focal signs of infection. Bacteremia was quantitated by the previously described procedure using heparinized blood (0.2 to 1.0 mL). Additionally, blood was cultured by means of the radiometric Bactec technique. Seventeen patients had meningitis, 12 had meningococcemia, 13 had unsuspected or "occult" bacteremia, and five had other diagnoses. "Occult" bactermia was diagnosed initially in four patients, but subsequently meningitis was diagnosed. All 13 patients with 500 or more organisms per milliliter had meningitis or meningococcemia in contrast to 12 (55%) of 22 patients with less than 500 organisms per milliliter (P ≤ .0035). Only 18 (42%) of these patients bacteremic with N meningitidis presented with petechiae or purpura. All 13 children with occult bacteremia were sent home after blood cultures were obtained; six of the 13 received a regimen of oral amoxicillin for otitis media. At reexamination (interval 16 to 119 hours) four had meningitis, seven were clinically improved (afebrile, negative blood culture, without invasive disease), and two were still mildly febrile with negative blood culture. Three of these bacteremic children experienced spontaneous clinical and bacteriologic resolution without antibiotic treatment. This has not been previously reported.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S148-S149
Author(s):  
Kristina B Pierce ◽  
Rebecca Barr ◽  
Aubrie Hopper ◽  
Charlotte Bowerbank ◽  
Anne Shaw ◽  
...  

Abstract Background Studies show a rising annual incidence of severe sepsis, with bloodstream infections continuing to impact children. Rapid identification of causative agents and timely administration of targeted therapy can positively impact patient outcomes and improve antibiotic stewardship. The BioFire® Blood Culture Identification 2 (BCID2) Panel (BioFire Diagnostics, LLC), an updated version of the FDA-cleared BioFire® FilmArray® Blood Culture Identification (BCID) Panel, designed for use on positive blood cultures (PBCs), assesses 43 analytes, including 17 novel analytes (8 bacterial, 2 fungal, and 7 antimicrobial resistance genes), with a similar turnaround time. Methods De-identified residual PBCs for which clinician-ordered testing per standard of care (SoC) had been performed were enrolled and tested with an Investigation-Use-Only version of the BCID2 Panel. Only one positive bottle per patient was enrolled. Results of BCID2 and BCID were compared. Results 116 PBCs (48 aerobic and 68 anaerobic) were evaluated using the BioFire BCID2 Panel and results were compared to the BioFire BCID Panel. Of the 116 cases, 103 were positive on both the BioFire BCID2 Panel and the BioFire BCID Panel. Ten cases were negative on both tests. While the two panels showed 97% agreement, three cases were discrepant. Using culture (SoC) as the tiebreaker, two cases were false positive and one case was false negative on the BioFire BCID Panel. In all three cases, results from culture and the BioFire BCID2 Panel were in agreement. As expected, no organisms were detected on the BioFire BCID2 Panel in PBCs from 10% (12/116) of PBC bottles where culture identified only organisms that are not part of the panel menu. With the BioFire BCID2 Panel’s expanded platform, two cases identified as Enterobacteriaceae on the BioFire BCID Panel were identified to the genus level on the BioFire BCID2 Panel; 31 cases detected to the genus level on the BioFire BCID Panel were identified to the species level on the BioFire BCID2 Panel. Conclusion Overall, the BioFire BCID2 Panel performed well against the BioFire BCID Panel for identification of bloodstream pathogens and provided additional discrimination of some pathogens to the genus or species level. Data presented are from assays that have not been cleared or approved for diagnostic use. Disclosures All Authors: No reported disclosures


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S68-S69
Author(s):  
Catherine Trinh ◽  
Steven Richardson ◽  
Benjamin Ereshefsky

Abstract Background Rapid diagnostic tests (RDT) for positive blood cultures can lead to quicker identification of organisms and key resistance elements. As a result time to targeted therapy may decrease, thus reducing the duration of broad, empiric antibiotic use. The purpose of this study was to determine the impact of implementing the BioFire® FilmArray® Blood Culture Identification (BCID) Panel for gram-positive organisms on antimicrobial process measures and patient outcomes at an academic community hospital. Methods This was a single-center, pre-post intervention, quasi-experimental study evaluating hospitalized adult patients who had at least one positive blood culture with gram-positive organisms from June 1, 2018 to August 31, 2018 and June 1, 2019 to August 31, 2019. Patients in the pre-intervention group were randomized and post-intervention patients were matched by identified organism. The primary outcome was the time to targeted therapy from blood culture collection. Secondary outcomes included time to targeted therapy from positive Gram stain, vancomycin and anti-pseudomonal β-lactam length of therapy (LOT), institutional vancomycin days of therapy (DOT), length of stay (LOS), and estimated hospitalization costs. Results A total of 75 patients in each group were included. The time to targeted therapy from blood culture collection was significantly decreased after RDT implementation [32.9 (23.2–51.8) hours vs. 49.2 (37.1–76.3 hours, p &lt; 0.001)], as was time to targeted therapy from Gram stain results [8.5 (0–25.2) hours vs. 30 (19.4–52.9) hours, p &lt; 0.001]. No difference was found between the groups with respect to LOS or estimated hospitalization cost. Overall the vancomycin LOT [0.86 (0.09–2.38) days vs. 2.18 (1.37–4.34) days, p = 0.001] and anti-pseudomonal β-lactam LOT for MRSA, MSSA, Streptococcus, and Enterococcus subgroup [1.15 (0.06–2.07) vs. 1.78 (1.28–2.89) days, p = 0.026] were significantly decreased in the post-RDT group. Figure 1: Institutional Use of Vnacomycin Conclusion Implementation of a rapid diagnostic test on gram-positive blood cultures was associated with decreased time to targeted therapy from blood culture collection, time to targeted therapy from positive culture, and vancomycin LOT. Disclosures All Authors: No reported disclosures


2018 ◽  
Vol 67 (1) ◽  
pp. 103-107 ◽  
Author(s):  
Maria Szymankiewicz ◽  
Beata Nakonowska

The results of the FilmArray® Blood Culture Identification Panel (BCID) (BioFire Diagnostics) and the culture with susceptibility testing of 70 positive blood cultures from oncologic patients were compared. The multiplex PCR assay (BCID) identified 81 of the 83 isolates (97.6%), covered by the panel. The panel produced results in significantly shorter time than standard identification methods, when counted from receiving positive blood cultures bottles to the final results. It is an accurate method for the rapid identification of pathogens and resistance genes from blood culture in oncologic patients.


Sign in / Sign up

Export Citation Format

Share Document