scholarly journals Synergy of β-Lactams with Vancomycin against Methicillin-Resistant Staphylococcus aureus: Correlation of Disk Diffusion and Checkerboard Methods

2015 ◽  
Vol 54 (3) ◽  
pp. 565-568 ◽  
Author(s):  
Cheng Len Sy ◽  
Tsi-Shu Huang ◽  
Chii Shiang Chen ◽  
Yao-Shen Chen ◽  
Hung-Chin Tsai ◽  
...  

Modified disk diffusion (MDD) and checkerboard tests were employed to assess the synergy of combinations of vancomycin and β-lactam antibiotics for 59 clinical isolates of methicillin-resistantStaphylococcus aureus(MRSA) and Mu50 (ATCC 700699). Bacterial inocula equivalent to 0.5 and 2.0 McFarland standard were inoculated on agar plates containing 0, 0.5, 1, and 2 μg/ml of vancomycin. Oxacillin-, cefazolin-, and cefoxitin-impregnated disks were applied to the surface, and the zones of inhibition were measured at 24 h. The CLSI-recommended checkerboard method was used as a reference to detect synergy. The MICs for vancomycin were determined using the Etest method, broth microdilution, and the Vitek 2 automated system. Synergy was observed with the checkerboard method in 51% to 60% of the isolates when vancomycin was combined with any β-lactam. The fractional inhibitory concentration indices were significantly lower in MRSA isolates with higher vancomycin MIC combinations (P< 0.05). The overall agreement between the MDD and checkerboard methods to detect synergy in MRSA isolates with bacterial inocula equivalent to McFarland standard 0.5 were 33.0% and 62.5% for oxacillin, 45.1% and 52.4% for cefazolin, and 43.1% and 52.4% for cefoxitin when combined with 0.5 and 2 μg/ml of vancomycin, respectively. Based on our study, the simple MDD method is not recommended as a replacement for the checkerboard method to detect synergy. However, it may serve as an initial screening method for the detection of potential synergy when it is not feasible to perform other labor-intensive synergy tests.

2017 ◽  
Vol 56 (1) ◽  
Author(s):  
André Kriegeskorte ◽  
Evgeny A. Idelevich ◽  
Andreas Schlattmann ◽  
Franziska Layer ◽  
Birgit Strommenger ◽  
...  

ABSTRACT Similar to mecA, mecC confers resistance against beta-lactams, leading to the phenotype of methicillin-resistant Staphylococcus aureus (MRSA). However, mecC-harboring MRSA strains pose special difficulties in their detection. The aim of this study was to assess and compare different phenotypic systems for screening, identification, and susceptibility testing of mecC-positive MRSA isolates. A well-characterized collection of mecC-positive S. aureus isolates (n = 111) was used for evaluation. Routinely used approaches were studied to determine their suitability to correctly identify mecC-harboring MRSA, including three (semi)automated antimicrobial susceptibility testing (AST) systems and five selective chromogenic agar plates. Additionally, a cefoxitin disk diffusion test and an oxacillin broth microdilution assay were examined. All mecC-harboring MRSA isolates were able to grow on all chromogenic MRSA screening plates tested. Detection of these isolates in AST systems based on cefoxitin and/or oxacillin testing yielded overall positive agreements with the mecC genotype of 97.3% (MicroScan WalkAway; Siemens), 91.9% (Vitek 2; bioMérieux), and 64.9% (Phoenix, BD). The phenotypic resistance pattern most frequently observed by AST devices was “cefoxitin resistance/oxacillin susceptibility,” ranging from 54.1% (Phoenix) and 83.8% (Vitek 2) to 92.8% (WalkAway). The cefoxitin disk diffusion and oxacillin broth microdilution assays categorized 100% and 61.3% of isolates to be MRSA, respectively. The chromogenic media tested confirmed their suitability to reliably screen for mecC-harboring MRSA. The AST systems showed false-negative results with varying numbers, misidentifying mecC-harboring MRSA as methicillin-susceptible S. aureus. This study underlines cefoxitin's status as the superior surrogate mecC-positive MRSA marker.


2019 ◽  
Vol 57 (9) ◽  
Author(s):  
Ayesha Khan ◽  
Lina M. Rivas ◽  
Maria Spencer ◽  
Rodrigo Martinez ◽  
Marusella Lam ◽  
...  

ABSTRACT Ceftaroline (CPT) is a broad-spectrum agent with potent activity against methicillin-resistant Staphylococcus aureus (MRSA). The sequence type 5 (ST5) Chilean-Cordobés clone, associated with CPT nonsusceptibility, is dominant in Chile, a region with high rates of MRSA infections. Here, we assessed the in vitro activity of CPT against a collection of MRSA isolates collected between 1999 and 2018 from nine hospitals (n = 320) and community settings (n = 41) in Santiago, Chile, and evaluated performance across testing methodologies. We found that our hospital-associated isolates exhibited higher CPT MIC distributions (MIC50 and MIC90 of 2 mg/liter) than the community isolates (MIC50 and MIC90 of 0.5 mg/liter), a finding that was consistent across time and independent of the culture source. High proportions (64%) of isolates were CPT nonsusceptible despite the absence of CPT use in Chile. Across methodologies, the Etest underestimated the MIC relative to the gold standard broth microdilution (BMD) test (MIC50 and MIC90 of 1 and 1.5 mg/liter, respectively). There was low (∼51%) categorical agreement (CA) between Etest and BMD results across CLSI and EUCAST breakpoints. The recent revision of CLSI guidelines abolished “very major error” (VME) from the previous guidelines (81%), which perform similarly to the EUCAST guidelines. The level of concordance between CLSI and EUCAST for BMD testing and Etest was >95%. Disk diffusion performed poorly relative to BMD under CLSI (CA, 55%) and EUCAST (CA, 36%) guidelines. Comparison of EUCAST to CLSI for disk diffusion (with EUCAST used as the reference) showed low agreement (CA, 25%; VME, 70%). In summary, CPT-nonsusceptible MRSA are dominant in clinical settings in Chile. Our results provide data to support the reevaluation of CPT breakpoints and to improve agreement across methodologies and agencies.


2013 ◽  
Vol 58 (2) ◽  
pp. 1028-1033 ◽  
Author(s):  
Thomas J. Dilworth ◽  
Jora Sliwinski ◽  
Keenan Ryan ◽  
Monique Dodd ◽  
Renée-Claude Mercier

ABSTRACTVancomycin with piperacillin-tazobactam is used as empirical therapy for critically ill patients. Studies of this combination against methicillin-resistantStaphylococcus aureus(MRSA) and vancomycin-intermediateS. aureus(VISA) are limited, but β-lactams in combination with vancomycin have shown synergistic activity against MRSA and VISA. The goal of this study was to evaluate whether piperacillin-tazobactam and vancomycin were synergistic against MRSA and VISAin vitro. Bloodstream MRSA (n= 20) and VISA (n= 4) strains were selected.In vitroantimicrobial activities of piperacillin-tazobactam and oxacillin were evaluated by disk diffusion, and MICs were determined by Etest using Muller-Hinton agar with and without vancomycin at one-half the MIC. Time-kill studies evaluated 14 MRSA and all 4 VISA isolates using piperacillin-tazobactam at 300/35 mg/liter or oxacillin at 40 mg/liter alone and with vancomycin at one-half the MIC. Mean zones of inhibition for piperacillin-tazobactam and oxacillin increased with vancomycin against MRSA and VISA (P< 0.001 for all), and the MIC90decreased with vancomycin against MRSA and VISA to values meeting susceptibility criteria forS. aureus(P< 0.001 for both antibiotics against MRSA). In MRSA time-kill studies, the mean 24-h reductions in inoculum for piperacillin-tazobactam, piperacillin-tazobactam with vancomycin, and oxacillin with vancomycin were 3.53, 3.69, and 2.62 log10CFU/ml, respectively. The mean 24-h reductions in VISA inoculum for piperacillin-tazobactam, piperacillin-tazobactam with vancomycin, and oxacillin with vancomycin were 2.85, 2.93, and 3.45 log10CFU/ml, respectively. Vancomycin with piperacillin-tazobactam or oxacillin demonstrated synergistic activity against MRSA and VISA. The clinical implications of these combinations against MRSA and VISA should be investigated.


2011 ◽  
Vol 55 (12) ◽  
pp. 5480-5484 ◽  
Author(s):  
Yuhan Chang ◽  
Wen-Chien Chen ◽  
Pang-Hsin Hsieh ◽  
Dave W. Chen ◽  
Mel S. Lee ◽  
...  

ABSTRACTThe objective of this study was to evaluate the antibacterial effects of polymethylmethacrylate (PMMA) bone cements loaded with daptomycin, vancomycin, and teicoplanin against methicillin-susceptibleStaphylococcus aureus(MSSA), methicillin-resistantStaphylococcus aureus(MRSA), and vancomycin-intermediateStaphylococcus aureus(VISA) strains. Standardized cement specimens made from 40 g PMMA loaded with 1 g (low-dose), 4 g (middle-dose) or 8 g (high-dose) antibiotics were tested for elution characteristics and antibacterial activities. The patterns of release of antibiotics from the cement specimens were evaluated usingin vitrobroth elution assay with high-performance liquid chromatography. The activities of broth elution fluid against differentStaphylococcus aureusstrains (MSSA, MRSA, and VISA) were then determined. The antibacterial activities of all the tested antibiotics were maintained after being mixed with PMMA. The cements loaded with higher dosages of antibiotics showed longer elution periods. Regardless of the antibiotic loading dose, the teicoplanin-loaded cements showed better elution efficacy and provided longer inhibitory periods against MSSA, MRSA, and VISA than cements loaded with the same dose of vancomycin or daptomycin. Regarding the choice of antibiotics for cement loading in the treatment ofStaphylococcus aureusinfection, teicoplanin was superior in terms of antibacterial effects.


2015 ◽  
Vol 59 (12) ◽  
pp. 7571-7580 ◽  
Author(s):  
Wei-Tao Jia ◽  
Qiang Fu ◽  
Wen-Hai Huang ◽  
Chang-Qing Zhang ◽  
Mohamed N. Rahaman

ABSTRACTThere is growing interest in biomaterials that can cure bone infection and also regenerate bone. In this study, two groups of implants composed of 10% (wt/wt) teicoplanin (TEC)-loaded borate bioactive glass (designated TBG) or calcium sulfate (TCS) were created and evaluated for their ability to release TECin vitroand to cure methicillin-resistantStaphylococcus aureus(MRSA)-induced osteomyelitis in a rabbit model. When immersed in phosphate-buffered saline (PBS), both groups of implants provided a sustained release of TEC at a therapeutic level for up to 3 to 4 weeks while they were gradually degraded and converted to hydroxyapatite. The TBG implants showed a longer duration of TEC release and better retention of strength as a function of immersion time in PBS. Infected rabbit tibiae were treated by debridement, followed by implantation of TBG or TCS pellets or intravenous injection with TEC, or were left untreated. Evaluation at 6 weeks postimplantation showed that the animals implanted with TBG or TCS pellets had significantly lower radiological and histological scores, lower rates of MRSA-positive cultures, and lower bacterial loads than those preoperatively and those of animals treated intravenously. The level of bone regeneration was also higher in the defects treated with the TBG pellets. The results showed that local TEC delivery was more effective than intravenous administration for the treatment of MRSA-induced osteomyelitis. Borate glass has the advantages of better mechanical strength, more desirable kinetics of release of TEC, and a higher osteogenic capacity and thus could be an effective alternative to calcium sulfate for local delivery of TEC.


2011 ◽  
Vol 55 (5) ◽  
pp. 2466-2468 ◽  
Author(s):  
Yurika Ikeda-Dantsuji ◽  
Hideaki Hanaki ◽  
Taiji Nakae ◽  
Yoshio Takesue ◽  
Kazunori Tomono ◽  
...  

ABSTRACTMethicillin-resistantStaphylococcus aureuswith a MIC of linezolid of 4 μg/ml, isolated from a patient who had undergone unsuccessful linezolid therapy, yielded linezolid-resistant mutants in blood agar at 48 h of incubation. The resistant clones showed a MIC of linezolid ranging from 8 to 64 μg/ml and accumulated the T2500A mutation(s) of the rRNA genes. Emergence of these resistant clones appears to be facilitated by a cryptic mutation or mutations associated with chloramphenicol resistance.


2015 ◽  
Vol 59 (8) ◽  
pp. 4497-4503 ◽  
Author(s):  
Katie E. Barber ◽  
Jordan R. Smith ◽  
Cortney E. Ireland ◽  
Blaise R. Boles ◽  
Warren E. Rose ◽  
...  

ABSTRACTAnnually, medical device infections are associated with >250,000 catheter-associated bloodstream infections (CLABSI), with up to 25% mortality.Staphylococcus aureus, a primary pathogen in these infections, is capable of biofilm production, allowing organism persistence in harsh environments, offering antimicrobial protection. With increases inS. aureusisolates with reduced susceptibility to current agents, ceftaroline (CPT) offers a therapeutic alternative. Therefore, we evaluated whether CPT would have a role against biofilm-producing methicillin-resistantS. aureus(MRSA), including those with decreased susceptibilities to alternative agents. In this study, we investigated CPT activity alone or combined with daptomycin (DAP) or rifampin (RIF) against 3 clinical biofilm-producing MRSA strains in anin vitrobiofilm pharmacokinetic/pharmacodynamic (PK/PD) model. Simulated antimicrobial regimens were as follows: 600 mg of CPT every 8 h (q8h) (free maximum concentration of drug [fCmax], 17.04 mg/liter; elimination half-life [t1/2], 2.66 h), 12 mg/kg of body weight/day of DAP (fCmax, 14.7 mg/liter;t1/2, 8 h), and 450 mg of RIF q12h (fCmax, 3.5 mg/liter;t1/2, 3.4 h), CPT plus DAP, and CPT plus RIF. Samples were obtained and plated to determine colony counts. Differences in log10CFU/cm2were evaluated by analysis of variance with Tukey'spost hoctest. The strains were CPT and vancomycin susceptible and DAP nonsusceptible (DNS). CPT displayed activity throughout the experiment. DAP demonstrated initial activity with regrowth at 24 h in all strains. RIF was comparable to the drug-free control, and little benefit was observed when combined with CPT. CPT plus DAP displayed potent activity, with an average log10CFU/cm2reduction of 3.33 ± 1.01 from baseline. CPT demonstrated activity against biofilm-producing DNS MRSA. CPT plus DAP displayed therapeutic enhancement over monotherapy, providing a potential option for difficult-to-treat medical device infections.


2016 ◽  
Vol 60 (10) ◽  
pp. 6333-6340 ◽  
Author(s):  
Binh An Diep ◽  
Vien T. M. Le ◽  
Zehra C. Visram ◽  
Harald Rouha ◽  
Lukas Stulik ◽  
...  

ABSTRACTCommunity-associated methicillin-resistantStaphylococcus aureus(CA-MRSA), especially the USA300 pulsotype, is a frequent cause of skin and soft tissue infections and severe pneumonia. Despite appropriate antibiotic treatment, complications are common and pneumonia is associated with high mortality.S. aureusstrains express multiple cytotoxins, including alpha-hemolysin (Hla) and up to five bicomponent leukocidins that specifically target phagocytic cells for lysis. CA-MRSA USA300 strains carry the genes for all six cytotoxins. Species specificity of the leukocidins greatly contributes to the ambiguity regarding their role inS. aureuspathogenesis. We performed a comparative analysis of the leukocidin susceptibility of human, rabbit, and mouse polymorphonuclear leukocytes (PMNs) to assess the translational value of mouse and rabbitS. aureusmodels. We found that mouse PMNs were largely resistant to LukSF-PV, HlgAB, and HlgCB and susceptible only to LukED, whereas rabbit and human PMNs were highly sensitive to all these cytotoxins. In the rabbit pneumonia model with a USA300 CA-MRSA strain, passive immunization with a previously identified human monoclonal antibody (MAb), Hla-F#5, which cross-neutralizes Hla, LukSF-PV, HlgAB, HlgCB, and LukED, provided full protection, whereas an Hla-specific MAb was only partially protective. In the mouse USA300 CA-MRSA pneumonia model, both types of antibodies demonstrated full protection, suggesting that Hla, but not leukocidin(s), is the principal virulence determinant in mice. As the rabbit recapitulates the high susceptibility to leukocidins characteristic of humans, this species represents a valuable model for assessing novel, cytotoxin-targeting anti-S. aureustherapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document