scholarly journals Evaluation of the Revogene Carba C Assay for Detection and Differentiation of Carbapenemase-Producing Gram-Negative Bacteria

2020 ◽  
Vol 58 (4) ◽  
Author(s):  
Delphine Girlich ◽  
Marine Laguide ◽  
Laurent Dortet ◽  
Thierry Naas

ABSTRACT The Revogene Carba C assay (formerly GenePOC Carba assay) is a multiplex nucleic acid-based in vitro diagnostic test intended for the detection of carbapenemase-producing Enterobacterales (CPE) from cultured colonies. This assay was evaluated directly on colonies of 118 well-characterized Enterobacterales with reduced susceptibility to carbapenems and on 49 multidrug-resistant (MDR) Pseudomonas aeruginosa and 40 MDR Acinetobacter baumannii isolates. The Revogene Carba C assay’s performance was high, as it was able to detect the five major carbapenemases (NDM, VIM, IMP, KPC, and OXA-48). In Enterobacterales, sensitivity and specificity were 100%. When extrapolating the results to the French CPE epidemiology between 2012 and 2018, this assay would have detected 99.28% of the 9,624 CPE isolates sent to the French NRC, missing 69 CPE isolates (2 GES-5, 10 OXA-23, 2 TMB-1, 1 SME-4, 53 IMI, and 1 FRI). The overall sensitivity and specificity for CP P. aeruginosa were 93.7 and 100%, respectively, as two rare IMP variants (IMP-31 and -46) were not detected. Extrapolating these results to the French epidemiology of CP P. aeruginosa in 2017, 93.3% would have been identified, missing only 1 DIM and 10 GES variants. The Revogene Carba C assay accurately identified the targeted carbapenemase genes in A. baumannii, but when extrapolating these results to the French CP A. baumannii epidemiology of 2017, only 12.50% of them could be detected, as OXA-23 is the most prevalent carbapenemase in CP A. baumannii. The Revogene Carba C assay showed excellent sensitivity and specificity for the five most common carbapenemases regardless of the bacterial host. It is well adapted to the CPE and CP P. aeruginosa epidemiology of many countries worldwide, which makes it suitable for use in the routine microbiology laboratory, with a time to result of ca. 85 min for eight isolates simultaneously.

2015 ◽  
Vol 59 (4) ◽  
pp. 2280-2285 ◽  
Author(s):  
Robert K. Flamm ◽  
Paul R. Rhomberg ◽  
Ronald N. Jones ◽  
David J. Farrell

ABSTRACTRX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shownin vitroactivity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis.Enterobacteriaceae(657),Pseudomonas aeruginosa(200), andAcinetobacter baumannii(202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were testedin vitroby broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% ofEnterobacteriaceaeisolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positiveProtea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active againstPseudomonas aeruginosaisolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active againstP. aeruginosathan tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent againstAcinetobacter baumannii(MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.


2013 ◽  
Vol 58 (2) ◽  
pp. 851-858 ◽  
Author(s):  
Nicola Petrosillo ◽  
Maddalena Giannella ◽  
Massimo Antonelli ◽  
Mario Antonini ◽  
Bruno Barsic ◽  
...  

ABSTRACTA colistin-glycopeptide combination (CGC) has been shownin vitroto be synergistic against multidrug-resistant Gram-negative bacteria (MDR GNB), especiallyAcinetobacter baumannii, and to prevent further resistance. However, clinical data are lacking. We carried out a retrospective multicenter study of patients hospitalized in intensive care units (ICUs) who received colistin for GNB infection over a 1-year period, to assess the rates of nephrotoxicity and 30-day mortality after treatment onset among patients treated with and without CGC for ≥48 h. Of the 184 patients treated with colistin, GNB infection was documented for 166. The main causative agents were MDRA. baumannii(59.6%), MDRPseudomonas aeruginosa(18.7%), and carbapenem-resistantKlebsiella pneumoniae(14.5%); in 16.9% of patients, a Gram-positive bacterium (GPB) coinfection was documented. Overall, 68 patients (40.9%) received CGC. Comparison of patients treated with and without CGC showed significant differences for respiratory failure (39.7% versus 58.2%), ventilator-associated pneumonia (54.4% versus 71.4%), MDRA. baumanniiinfection (70.6% versus 52%), and GPB coinfection (41.2% versus 0%); there were no differences for nephrotoxicity (11.8% versus 13.3%) and 30-day mortality (33.8% versus 29.6%). Cox analysis performed on patients who survived for ≥5 days after treatment onset showed that the Charlson index (hazard ratio [HR], 1.26; 95% confidence interval [CI], 1.01 to 1.44;P= 0.001) and MDRA. baumanniiinfection (HR, 2.51; 95% CI, 1.23 to 5.12;P= 0.01) were independent predictors of 30-day mortality, whereas receiving CGC for ≥5 days was a protective factor (HR, 0.42; 95% CI, 0.19 to 0.93;P= 0.03). We found that CGC was not associated with higher nephrotoxicity and was a protective factor for mortality if administered for ≥5 days.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Jeffrey A. Melvin ◽  
Jordan R. Gaston ◽  
Shawn N. Phillips ◽  
Michael J. Springer ◽  
Christopher W. Marshall ◽  
...  

ABSTRACT How bacteria compete and communicate with each other is an increasingly recognized aspect of microbial pathogenesis with a major impact on disease outcomes. Gram-negative bacteria have recently been shown to employ a contact-dependent toxin-antitoxin system to achieve both competition and regulation of their physiology. Here, we show that this system is vital for virulence in acute infection as well as for establishment of chronic infection in the multidrug-resistant pathogen Pseudomonas aeruginosa. Greater understanding of the mechanisms underlying bacterial virulence and infection is important for the development of effective therapeutics in the era of increasing antimicrobial resistance. Microorganisms exist in a diverse ecosystem and have evolved many different mechanisms for sensing and influencing the polymicrobial environment around them, utilizing both diffusible and contact-dependent signals. Contact-dependent growth inhibition (CDI) is one such communication system employed by Gram-negative bacteria. In addition to CDI mediation of growth inhibition, recent studies have demonstrated CDI-mediated control of communal behaviors such as biofilm formation. We postulated that CDI may therefore play an active role in host-pathogen interactions, allowing invading strains to establish themselves at polymicrobial mucosal interfaces through competitive interactions while simultaneously facilitating pathogenic capabilities via CDI-mediated signaling. Here, we show that Pseudomonas aeruginosa produces two CDI systems capable of mediating competition under conditions of growth on a surface or in liquid. Furthermore, we demonstrated a novel role for these systems in contributing to virulence in acute infection models, likely via posttranscriptional regulation of beneficial behaviors. While we did not observe any role for the P. aeruginosa CDI systems in biofilm biogenesis, we did identify for the first time robust CDI-mediated competition during interaction with a mammalian host using a model of chronic respiratory tract infection, as well as evidence that CDI expression is maintained in chronic lung infections. These findings reveal a previously unappreciated role for CDI in host-pathogen interactions and emphasize their importance during infection. IMPORTANCE How bacteria compete and communicate with each other is an increasingly recognized aspect of microbial pathogenesis with a major impact on disease outcomes. Gram-negative bacteria have recently been shown to employ a contact-dependent toxin-antitoxin system to achieve both competition and regulation of their physiology. Here, we show that this system is vital for virulence in acute infection as well as for establishment of chronic infection in the multidrug-resistant pathogen Pseudomonas aeruginosa. Greater understanding of the mechanisms underlying bacterial virulence and infection is important for the development of effective therapeutics in the era of increasing antimicrobial resistance.


2020 ◽  
Vol 64 (7) ◽  
Author(s):  
José Manuel Ortiz de la Rosa ◽  
Patrice Nordmann ◽  
Laurent Poirel

ABSTRACT Many transferable quinolone resistance mechanisms have been identified in Gram-negative bacteria. The plasmid-encoded 65-amino-acid-long ciprofloxacin-modifying enzyme CrpP was recently identified in Pseudomonas aeruginosa isolates. We analyzed a collection of 100 clonally unrelated and multidrug-resistant P. aeruginosa clinical isolates, among which 46 were positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. These crpP-like genes were chromosomally located as part of pathogenicity genomic islands.


2018 ◽  
Vol 62 (7) ◽  
pp. e02584-17 ◽  
Author(s):  
Gregory G. Stone ◽  
Paul Newell ◽  
Patricia A. Bradford

ABSTRACT The increasing prevalence of multidrug-resistant Gram-negative pathogens has generated a requirement for new treatment options. Avibactam, a novel non-β-lactam–β-lactamase inhibitor, restores the activity of ceftazidime against Ambler class A, C, and some class D β-lactamase-producing strains of Enterobacteriaceae and Pseudomonas aeruginosa. The in vitro activities of ceftazidime-avibactam versus comparators were evaluated against 1,440 clinical isolates obtained in a phase 3 clinical trial in patients with complicated intra-abdominal infections (cIAI; ClinicalTrials.gov identifier NCT01499290). Overall, in vitro activities were determined for 803 Enterobacteriaceae, 70 P. aeruginosa, 304 Gram-positive aerobic, and 255 anaerobic isolates obtained from 1,066 randomized patients at baseline. Susceptibility was determined by broth microdilution. The most commonly isolated Gram-negative, Gram-positive, and anaerobic pathogens were Escherichia coli (n = 549), Streptococcus anginosus (n = 130), and Bacteroides fragilis (n = 96), respectively. Ceftazidime-avibactam was highly active against isolates of Enterobacteriaceae, with an overall MIC90 of 0.25 mg/liter. In contrast, the MIC90 for ceftazidime alone was 32 mg/liter. The MIC90 value for ceftazidime-avibactam (4 mg/liter) was one dilution lower than that of ceftazidime alone (8 mg/liter) against isolates of Pseudomonas aeruginosa. The ceftazidime-avibactam MIC90 for 109 ceftazidime-nonsusceptible Enterobacteriaceae isolates was 2 mg/liter, and the MIC range for 6 ceftazidime-nonsusceptible P. aeruginosa isolates was 8 to 32 mg/liter. The MIC90 values were within the range of susceptibility for the study drugs permitted per the protocol in the phase 3 study to provide coverage for aerobic Gram-positive and anaerobic pathogens. These findings demonstrate the in vitro activity of ceftazidime-avibactam against bacterial pathogens commonly observed in cIAI patients, including ceftazidime-nonsusceptible Enterobacteriaceae. (This study has been registered at ClinicalTrials.gov under identifier NCT01499290.)


2016 ◽  
Vol 60 (7) ◽  
pp. 4387-4390 ◽  
Author(s):  
Benjamin Miller ◽  
Myra W. Popejoy ◽  
Ellie Hershberger ◽  
Judith N. Steenbergen ◽  
John Alverdy

ABSTRACTCeftolozane-tazobactam is active against Gram-negative pathogens, including multidrug-resistantPseudomonas aeruginosa. In a subgroup analysis of patients with complicated intra-abdominal infections (cIAIs) involvingP. aeruginosafrom a phase 3 program, ceftolozane-tazobactam demonstrated potentin vitroactivity againstP. aeruginosa. Clinical cure in the microbiologically evaluable population was 100% (26/26) for ceftolozane-tazobactam plus metronidazole and 93.1% (27/29) for meropenem. These findings support the use of ceftolozane-tazobactam in the management of cIAI whenP. aeruginosais suspected or confirmed. (This study has been registered at ClinicalTrials.gov under registration no. NCT01445665 and NCT01445678.)


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Marguerite L. Monogue ◽  
Masakatsu Tsuji ◽  
Yoshinori Yamano ◽  
Roger Echols ◽  
David P. Nicolau

ABSTRACT Cefiderocol (S-649266) is a novel siderophore cephalosporin with potent in vitro activity against clinically encountered multidrug-resistant (MDR) Gram-negative isolates; however, its spectrum of antibacterial activity against these difficult-to-treat isolates remains to be fully explored in vivo. Here, we evaluated the efficacy of cefiderocol humanized exposures in a neutropenic murine thigh model to support a suitable MIC breakpoint. Furthermore, we compared cefiderocol's efficacy with humanized exposures of meropenem and cefepime against a subset of these phenotypically diverse isolates. Ninety-five Gram-negative isolates were studied. Efficacy was determined as the change in log10 CFU at 24 h compared with 0-h controls. Bacterial stasis or ≥1 log reduction in 67 isolates with MICs of ≤4 μg/ml was noted in 77, 88, and 85% of Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa, respectively. For isolates with MICs of ≥8 μg/ml, bacterial stasis or ≥1 log10 reduction was observed in only 2 of 28 (8 Enterobacteriaceae, 19 A. baumannii, and 1 P. aeruginosa) strains. Against highly resistant meropenem and cefepime organisms, cefiderocol maintained its in vivo efficacy. Overall, humanized exposures of cefiderocol produced similar reductions in bacterial density for organisms with MICs of ≤4 μg/ml, whereas isolates with MICs of ≥8 μg/ml generally displayed bacterial growth in the presence of the compound. Data derived in the current study will assist with the delineation of MIC susceptibility breakpoints for cefiderocol against these important nosocomial Gram-negative pathogens; however, additional clinical data are required to substantiate these observations.


2015 ◽  
Vol 59 (6) ◽  
pp. 3623-3626 ◽  
Author(s):  
Andrew J. Denisuik ◽  
James A. Karlowsky ◽  
Tyler Denisuik ◽  
Wright W. Nichols ◽  
Thomas A. Keating ◽  
...  

ABSTRACTThe mechanism of aminoglycoside resistance among 338 gentamicin-nonsusceptible Gram-negative bacteria (207Enterobacteriaceaeand 131Pseudomonas aeruginosa) was assessed, and thein vitroactivity of ceftazidime-avibactam against these isolates was determined. Aminoglycoside-modifying enzymes were detected in 91.8% ofEnterobacteriaceaeand 13.7% ofP. aeruginosaisolates. A single strain ofKlebsiella pneumoniaeharbored a 16S rRNA methylase (ArmA). The ceftazidime-avibactam MIC90values were 0.5 μg/ml (MIC, ≤8 μg/ml for 100% of isolates) and 16 μg/ml (MIC, ≤8 μg/ml for 87.8% of isolates) against gentamicin-nonsusceptibleEnterobacteriaceaeandP. aeruginosaisolates, respectively.


mSphere ◽  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Anna Giammanco ◽  
Cinzia Calà ◽  
Teresa Fasciana ◽  
Michael J. Dowzicky

ABSTRACT Multidrug resistance among bacterial pathogens is an ongoing global problem and renders antimicrobial agents ineffective at treating bacterial infections. In the health care setting, infections caused by multidrug-resistant (MDR) Gram-negative bacteria can cause increased mortality, longer hospital stays, and higher treatments costs. The aim of the Tigecycline Evaluation and Surveillance Trial (TEST) is to assess the in vitro antimicrobial activities of tigecycline and other contemporary agents against clinically relevant pathogens. This paper presents antimicrobial activity data from the TEST study between 2004 and 2014 and examines global rates of MDR Gram-negative isolates, including Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacteriaceae, during this time. Our results show that tigecycline retained in vitro activity against many MDR Gram-negative pathogens over the study period, while rates of MDR A. baumannii increased globally. Using these findings, we hope to highlight the current status of multidrug resistance in medical facilities worldwide. Multidrug-resistant (MDR) Gram-negative organisms are a burden on the global health care system. The Tigecycline Evaluation and Surveillance Trial (TEST) is an ongoing global study designed to monitor the in vitro activities of tigecycline and a panel of marketed antimicrobials against a range of clinically significant pathogens. In this study, in vitro data are presented for MDR Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, and Enterobacter cloacae isolates collected from 2004 to 2014. In total, 13% (21,967/170,759) of isolates displayed multidrug resistance globally, with the highest rates recorded among A. baumannii (overall rate, 44% [8,294/18,741], increasing from 23% [309/1,323] in 2004 to 63% [447/712] in 2014). Other multidrug resistance rates ranged from 2.5% for K. oxytoca (203/8,000) to 12% for P. aeruginosa and K. pneumoniae (3,951/32,786 and 3,895/32,888, respectively), and rates among these pathogens remained stable during the study period. Against MDR E. coli, Klebsiella spp., and E. aerogenes, the lowest rates of resistance were to tigecycline (0.2%, 6%, and 12%, respectively), and the lowest MIC90 value against A. baumannii was observed for tigecycline (2 mg/liter; MIC range, ≤0.008 to ≥32 mg/liter). The only significant change in resistance to tigecycline during the study period was for MDR E. coli (P < 0.01), among which eight resistant isolates were identified globally from 2009 to 2013. In summary, these results show that tigecycline retained in vitro activity against the majority of MDR Gram-negative organisms presented here, but the rising rates of MDR A. baumannii highlight the need for the continued monitoring of global multidrug resistance. IMPORTANCE Multidrug resistance among bacterial pathogens is an ongoing global problem and renders antimicrobial agents ineffective at treating bacterial infections. In the health care setting, infections caused by multidrug-resistant (MDR) Gram-negative bacteria can cause increased mortality, longer hospital stays, and higher treatments costs. The aim of the Tigecycline Evaluation and Surveillance Trial (TEST) is to assess the in vitro antimicrobial activities of tigecycline and other contemporary agents against clinically relevant pathogens. This paper presents antimicrobial activity data from the TEST study between 2004 and 2014 and examines global rates of MDR Gram-negative isolates, including Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacteriaceae, during this time. Our results show that tigecycline retained in vitro activity against many MDR Gram-negative pathogens over the study period, while rates of MDR A. baumannii increased globally. Using these findings, we hope to highlight the current status of multidrug resistance in medical facilities worldwide.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Patrick Grohs ◽  
Gary Taieb ◽  
Philippe Morand ◽  
Iheb Kaibi ◽  
Isabelle Podglajen ◽  
...  

ABSTRACT Ceftolozane-tazobactam was tested against 58 multidrug-resistant nonfermenting Gram-negative bacilli (35 Pseudomonas aeruginosa, 11 Achromobacter xylosoxydans, and 12 Stenotrophomonas maltophilia isolates) isolated from cystic fibrosis patients and was compared to ceftolozane alone, ceftazidime, meropenem, and piperacillin-tazobactam. Ceftolozane-tazobactam was the most active agent against P. aeruginosa but was inactive against A. xylosoxydans and S. maltophilia. In time-kill experiments, ceftolozane-tazobactam had complete bactericidal activity against 2/6 clinical isolates (33%).


Sign in / Sign up

Export Citation Format

Share Document