scholarly journals Avian Pneumovirus (APV) RNA from Wild and Sentinel Birds in the United States Has Genetic Homology with RNA from APV Isolates from Domestic Turkeys

2000 ◽  
Vol 38 (11) ◽  
pp. 4282-4284 ◽  
Author(s):  
Hyun-Jin Shin ◽  
M. Kariuki Njenga ◽  
Brian McComb ◽  
David A. Halvorson ◽  
Kakambi V. Nagaraja

Nasal turbinates or swabs were collected from wild ducks, geese, owls, sparrows, swallows, and starlings and from sentinel ducks placed next to turkey farms experiencing avian pneumovirus (APV) infections and were analyzed for APV genome and infectious particles. APV RNA was detected in samples examined from geese, sparrows, and starlings. APV RNA and antibodies were also detected in two different groups of sentinel ducks. Infectious APV was recovered from sentinel duck samples. The APV M gene isolated from the wild birds had over 96% predicted amino acid identity with APV/Minnesota 2A, which was isolated earlier from domestic turkeys showing respiratory illness, suggesting that wild birds may be involved in spreading APV infection.

Plant Disease ◽  
2010 ◽  
Vol 94 (12) ◽  
pp. 1507-1507 ◽  
Author(s):  
C. V. Padilla ◽  
E. Cretazzo ◽  
I. Hita ◽  
N. López ◽  
V. Padilla ◽  
...  

Grapevine leafroll-associated viruses (GLRaVs) cause significant reductions in yield and quality in the wine industry worldwide. At least nine different GLRaVs have been found in different regions of the world. In the process of virus indexing of candidate grapevine clones for certification, which includes grafting of scions onto rootstocks, we observed strong leafroll symptoms 1 year after grafting with one vine of cv. Estaladina in Castilla y León, Spain and one vine of cv. Tempranillo in La Rioja, Spain, collected in 2008 and 2007, respectively. Both vines tested positive by real-time reverse transcription (RT)-PCR with TaqMan probes specific for Grapevine leafroll-associated virus 5 and double-antibody sandwich (DAS)-ELISA with a mix of monoclonal antibodies that recognizes GLRaV-4, 5, 6, 7, and 9 (Bioreba, Reinach, Switzerland). RNA extracts of both GLRaV-5 positive vines were analyzed by conventional RT-PCR with a pair of consensus degenerated primers derived from GLRaV-5 hsp70 sequences available in GenBank: LR5HYF (5′-TGGGATGAAYAARTTCAATGC-3′) and LR5HYR (5′-TGAAATTCCTCATRTARGAGC-3′) that amplified a 250-bp fragment. Amplicons were cloned and the comparison of the amino acid sequences (Estaladina isolate, Est110: Accession No. HM208622; Tempranillo isolate, Tem020: Accession No. HM208618) showed in the case of the Est110 isolate, 100 and 82.6% identity, respectively, with the homologous genes of one GLRaV-5 isolate from the United States (AF233934 [3]) and Argentina (EU815935 [2]). For isolate Tem020, the hsp70 gene showed 97.1 and 81.2% amino acid identity with the homologous hsp70 genes of the United States and Argentina isolates. The coat protein (cp) genes of both isolates were also amplified and cloned using the specific GLRaV-5 primers, LR53413 (5′-CGTGATACAAGGTAGGACAACCGT-3′) and LR53843 (5′-CTTGCACTATCGCTGCCGTGAAT-3′), designed according to the sequence of AF233934. Fragments were of the expected size (430 bp) and the nucleotide sequences were obtained (Est110: Accession No. HM363522; Tem020: Accession No. HM363523) and used for pairwise nucleotide comparisons. The Est110 isolate showed 96.7 and 97.5% amino acid identity with the isolates from the United States and Argentina, respectively, while the Tem020 isolate showed 94.8 and 95.6% identity, respectively. Amino acid identity of Est110 and Tem020 cp genes was 100% when compared with the homologous genes of isolates AF233934 and EU815935. To our knowledge this is the first report of GRLaV-5 in Spain. Since 2008, we have detected eight additional vines positive for this virus in 200 clones analyzed for certification, suggesting that the incidence of GLRaV-5 in Spain could be widespread. This research indicates that virus indexing for GLRaV should be included in certification schemes for grapevine candidate clones (1) in Spain. References: (1) Anonymous. OEPP/EPPO Bull. 38:422, 2008. (2) S. Gomez Talquenca et al. Virus Genes 38:184, 2009. (3) F. Osman et al. J. Virol. Methods 141:22, 2007.


Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 780-786 ◽  
Author(s):  
Sofia Avelar ◽  
Roberto Ramos-Sobrinho ◽  
Kassie Conner ◽  
Robert L. Nichols ◽  
Kathy Lawrence ◽  
...  

Virus-like disease symptoms consisting of leaf cupping, shortened internodes, and overall stunting were observed in commercial cotton fields in Alabama in 2017 to 2018. To determine the complete genome sequence of the suspected causal polerovirus, symptomatic leaf samples were collected in Macon County, Alabama, and subjected to Illumina RNA sequencing. Based on BLASTn analysis, the Illumina contig of 5,771 nt shared the highest nucleotide identity (approximately 95%) with members of the species Cotton leafroll dwarf virus (CLRDV) (genus Polerovirus; family Luteoviridae) from Argentina and Brazil. The full-length viral genome sequence was verified by reverse transcription (RT)-PCR amplification, cloning, and Sanger sequencing. The complete CLRDV genome of 5,865 nt in length shared 94.8 to 95.2% nucleotide identity with six previously reported CLRDV isolates. The genome of the CLRDV isolate amplified from Alabama samples (CLRDV-AL) has seven predicted open reading frames (ORFs). Viral proteins 1 to 5 (P1 to P5) shared 91.9 to 99.5% amino acid identity with the six CLRDV isolates from Argentina and Brazil. However, P0, the suppressor of host gene silencing, shared 82.4 to 88.5% pairwise amino acid identity with the latter CLRDV isolates. Phylogenetic analysis of the seven full-length CLRDV genomes resolved three sister clades: CLRDV-AL, CLRDV-typical, and CLRDV-atypical, respectively. Three recombination events were detected by the recombination detection program among the seven CLRDV isolates with breakpoints occurring along the genome. Pairwise nucleotide identity comparisons of ORF0 sequences for the three CLRDV-AL field isolates indicated that they were >99% identical, suggesting that this previously unknown CLRDV genotype represents a single introduction to Alabama.


Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1389-1389 ◽  
Author(s):  
M. A. Guaragna ◽  
J. Lamborn ◽  
D. Groth-Helms ◽  
S. Juszczak ◽  
D. Mollov ◽  
...  

Ornamental flower bulbs (including true bulbs, bulbils, corms, tubers, and rhizomes) are increasingly important floriculture crops. Amaryllis is a small genus of flowering bulbs, with two species. The South African native, Amaryllis belladonna, also known as belladonna lily, Jersey lily, naked lady, Amarillo, or March lily, is one of numerous ornamental species with the common name “lily” due to their flower shape and growth habit. Amaryllis are popular for their 6- to 10-inch trumpet shaped colorful flowers that are borne on 1- to 2-foot stalks. In January, 2011, a home gardener in California observed mosaic symptoms on the leaves of A. belladonna growing in her garden. Leaf samples were sent to Agdia Inc. for testing. Samples tested positive for the presence of Potyvirus in a reverse transcription (RT)-PCR screen using universal potyvirus primers (2) yielding the expected ∼1,600-bp product corresponding to the partial nuclear inclusion body (NIb) gene, full-length coat protein (CP) gene, and 3′ end untranslated region (UTR). Electron microscopy of symptomatic leaves confirmed the presence of filamentous potyvirus-like particles. The RT-PCR amplicon was cloned and sequenced (2); the 1,616-bp consensus sequence was deposited in GenBank (Accession No. JX865782). NCBI BLAST analysis of the consensus sequence revealed highest identities with isolates of Nerine yellow stripe virus (NeYSV; family Potyviridae, genus Potyvirus). Pair-wise analyses of the 261 amino acid sequence of the predicted CP had 88% sequence identity with a Stenomesson isolate reported from the Netherlands (EU042758); 87% identity with Hymenocallis and Nerine isolates, both also from the Netherlands (EF362622 and EF362621, respectively); and, 86% with two New Zealand isolates infecting Amaryllis or Vallota (FJ618537 and DQ407932, respectively). The five Netherlands and New Zealand isolates are more closely related to each other than to the U.S. isolate as they share 93 to 98% CP identity. When using viral genome sequence relatedness as a criterion for defining potyvirus species, isolates with CP amino acid identity greater than 80% are considered the same species (1). The predicted coat protein gene of the California isolate was sub-cloned into the bacterial expression vector pET44 EK/LIC. Serological analysis of coat protein expressing clones in ELISA and Western Blot analysis using a potyvirus broad-spectrum reacting monoclonal antibody PTY-2 (3) and a NeYSV-specific rabbit antiserum (Applied Plant Research, Lisse, The Netherlands) resulted in positive reactions. NeYSV has previously been reported in the United Kingdom, the Netherlands, Australia, and New Zealand. Based on the results of electron microscopy, RT-PCR, nucleotide and amino acid identity, and serological reactivity, we identify this virus as a U.S. isolate of NeYSV, NeYSV-US. To our knowledge, this is the first report of Nerine yellow stripe virus in the United States. Development of antisera specific to this U.S. isolate is in progress. References: (1) A. Gibbs and K. Ohshima. Ann. Rev. Phytopathol. 48:205, 2010. (2) R. L. Jordan et al. Acta Hortic. 901:159, 2011. (3) R. L. Jordan and J. Hammond. J. Gen. Virol. 72:1531, 1991.


Author(s):  
Mark W Tenforde ◽  
H Keipp Talbot ◽  
Christopher H Trabue ◽  
Manjusha Gaglani ◽  
Tresa M McNeal ◽  
...  

Abstract Background Influenza causes significant morbidity and mortality and stresses hospital resources during periods of increased circulation. We evaluated the effectiveness of the 2019-2020 influenza vaccine against influenza-associated hospitalizations in the United States. Methods We included adults hospitalized with acute respiratory illness at 14 hospitals and tested for influenza viruses by reserve transcription polymerase chain reaction. Vaccine effectiveness (VE) was estimated by comparing the odds of current-season influenza vaccination in test-positive influenza cases versus test-negative controls, adjusting for confounders. VE was stratified by age and major circulating influenza types along with A(H1N1)pdm09 genetic subgroups. Results 3116 participants were included, including 18% (553) influenza-positive cases. Median age was 63 years. Sixty-seven percent (2079) received vaccination. Overall adjusted VE against influenza viruses was 41% (95% confidence interval [CI]: 27-52). VE against A(H1N1)pdm09 viruses was 40% (95% CI: 24-53) and 33% against B viruses (95% CI: 0-56). Of the two major A(H1N1)pdm09 subgroups (representing 90% of sequenced H1N1 viruses), VE against one group (5A+187A,189E) was 59% (95% CI: 34-75) whereas no significant VE was observed against the other group (5A+156K) [-1%, 95% CI: -61-37]. Conclusions In a primarily older population, influenza vaccination was associated with a 41% reduction in risk of hospitalized influenza illness.


2005 ◽  
Vol 79 (17) ◽  
pp. 11412-11421 ◽  
Author(s):  
Chang-Won Lee ◽  
David E. Swayne ◽  
Jose A. Linares ◽  
Dennis A. Senne ◽  
David L. Suarez

ABSTRACT In early 2004, an H5N2 avian influenza virus (AIV) that met the molecular criteria for classification as a highly pathogenic AIV was isolated from chickens in the state of Texas in the United States. However, clinical manifestations in the affected flock were consistent with avian influenza caused by a low-pathogenicity AIV and the representative virus (A/chicken/Texas/298313/04 [TX/04]) was not virulent for experimentally inoculated chickens. The hemagglutinin (HA) gene of the TX/04 isolate was similar in sequence to A/chicken/Texas/167280-4/02 (TX/02), a low-pathogenicity AIV isolate recovered from chickens in Texas in 2002. However, the TX/04 isolate had one additional basic amino acid at the HA cleavage site, which could be attributed to a single point mutation. The TX/04 isolate was similar in sequence to TX/02 isolate in several internal genes (NP, M, and NS), but some genes (PA, PB1, and PB2) had sequence of a clearly different origin. The TX/04 isolate also had a stalk deletion in the NA gene, characteristic of a chicken-adapted AIV. By analyzing viruses constructed by in vitro mutagenesis followed by reverse genetics, we found that the pathogenicity of the TX/04 virus could be increased in vitro and in vivo by the insertion of an additional basic amino acid at the HA cleavage site and not by the loss of a glycosylation site near the cleavage site. Our study provides the genetic and biologic characteristics of the TX/04 isolate, which highlight the complexity of the polygenic nature of the virulence of influenza viruses.


2002 ◽  
Vol 24 (2) ◽  
pp. 317-324 ◽  
Author(s):  
Lynn H. Hoffman ◽  
David R. Strutton ◽  
Paul E. Stang ◽  
Susan L. Hogue

2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
C Torresi ◽  
F Granberg ◽  
L Bertolotti ◽  
A Oggiano ◽  
B Colitti ◽  
...  

Abstract In order to assess the molecular epidemiology of African swine fever (ASF) in Sardinia, we analyzed a wide range of isolates from wild and domestic pigs over a 31-year period (1978–2009) by genotyping sequence data from the genes encoding the p54 and the p72 proteins and the CVR. On this basis, the analysis of the B602L gene revealed a minor difference, placing the Sardinian isolates into two clusters according to their temporal distribution. As an extension of this study, in order to achieve a higher level of discrimination, three further variable genome regions, namely p30, CD2v, and I73R/I329L, of a large number of isolates collected from outbreaks in the years 2002–14 have been investigated. Sequence analysis of the CD2v region revealed a temporal subdivision of the viruses into two subgroups. These data, together with those from the B602L gene analysis, demonstrated that the viruses circulating in Sardinia belong to p72/genotype I, but since 1990 have undergone minor genetic variations in respect to its ancestor, thus making it impossible to trace isolates, enabling a more accurate assessment of the origin of outbreaks, and extending knowledge of virus evolution. To solve this problem, we have sequenced and annotated the complete genome of nine ASF isolates collected in Sardinia between 1978 and 2012. This was achieved using sequence data determined by next-generation sequencing. The results showed a very high identity with range of nucleotide similarity among isolates of 99.5 per cent to 99.9 per cent. The ASF virus (ASFV) genomes were composed of terminal inverted repeats and conserved and non-conserved ORFs. Among the conserved ORFs, B385R, H339R, and O61R-p12 showed 100 per cent amino acid identity. The same was true for the hypervariable ORFs, with regard to X69R, DP96R, DP60R, EP153R, B407L, I10L, and L60L genes. The EP402R and B602L genes showed, as expected, an amino acid identity range of 98.5 per cent to 100 per cent and 91 per cent to 100 per cent, respectively. In addition, all of the isolates displayed variable intergenic sequences. As a whole, the results from our studies confirmed a remarkable genetic stability of the ASFV/p72 genotype I viruses circulating in Sardinia.


2010 ◽  
Vol 65 (11-12) ◽  
pp. 719-725 ◽  
Author(s):  
Xiaoli Liu ◽  
Jun Chen ◽  
Zhifan Yang

Two cDNAs specific for P450 genes, CYP6AE28 and CYP6AE30, have been isolated from the rice leaf folder Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). Both cDNApredicted proteins have 504 amino acid residues in length, but with molecular masses of 60177 Dalton for CYP6AE28 and 60020 Dalton for CYP6AE30, and theoretical pI values of 8.49 for CYP6AE28 and 8.56 for CYP6AE30, respectively. Both putative proteins contain the conserved structural and functional domains characteristic of all CYP6 members. CYP6AE28 and CYP6AE30 show 52% amino acid identity to each other; both of them have 49 - 56% identities with CYP6AE1, Cyp6ae12, and CYP6AE14. Phylogenetic analysis showed that the two P450s are grouped in the lineage containing some of the CYP6AE members, CYP6B P450s and CYP321A1. The transcripts of CYP6AE28 and CYP6AE30 were found to be induced in response to TKM-6, a rice variety with high resistance to C. medinalis. The results suggest that the two P450s may play important roles in adaptation to the host plant rice. This is the first report of P450 genes cloned in C. medinalis


Sign in / Sign up

Export Citation Format

Share Document