scholarly journals Complexity of Neutralizing Antibodies against Multiple Dengue Virus Serotypes after Heterotypic Immunization and Secondary Infection Revealed by In-Depth Analysis of Cross-Reactive Antibodies

2015 ◽  
Vol 89 (14) ◽  
pp. 7348-7362 ◽  
Author(s):  
Wen-Yang Tsai ◽  
Anna Durbin ◽  
Jih-Jin Tsai ◽  
Szu-Chia Hsieh ◽  
Stephen Whitehead ◽  
...  

ABSTRACTThe four serotypes of dengue virus (DENV) cause the most important and rapidly emerging arboviral diseases in humans. The recent phase 2b and 3 studies of a tetravalent dengue vaccine reported a moderate efficacy despite the presence of neutralizing antibodies, highlighting the need for a better understanding of neutralizing antibodies in polyclonal human sera. Certain type-specific (TS) antibodies were recently discovered to account for the monotypic neutralizing activity and protection after primary DENV infection. The nature of neutralizing antibodies after secondary DENV infection remains largely unknown. In this study, we examined sera from 10 vaccinees with well-documented exposure to first and second DENV serotypes through heterotypic immunization with live-attenuated vaccines. Higher serum IgG avidities to both exposed and nonexposed serotypes were found after secondary immunization than after primary immunization. Using a two-step depletion protocol to remove different anti-envelope antibodies, including group-reactive (GR) and complex-reactive (CR) antibodies separately, we found GR and CR antibodies together contributed to more than 50% of neutralizing activities against multiple serotypes after secondary immunization. Similar findings were demonstrated in patients after secondary infection. Anti-envelope antibodies recognizing previously exposed serotypes consisted of a large proportion of GR antibodies, CR antibodies, and a small proportion of TS antibodies, whereas those recognizing nonexposed serotypes consisted of GR and CR antibodies. These findings have implications for sequential heterotypic immunization or primary immunization of DENV-primed individuals as alternative strategies for DENV vaccination. The complexity of neutralizing antibodies after secondary infection provides new insights into the difficulty of their application as surrogates of protection.IMPORTANCEThe four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in humans. Despite the presence of neutralizing antibodies, a moderate efficacy was recently reported in phase 2b and 3 trials of a dengue vaccine; a better understanding of neutralizing antibodies in polyclonal human sera is urgently needed. We studied vaccinees who received heterotypic immunization of live-attenuated vaccines, as they were known to have received the first and second DENV serotype exposures. We found anti-envelope antibodies consist of group-reactive (GR), complex-reactive (CR), and type-specific (TS) antibodies, and that both GR and CR antibodies contribute significantly to multitypic neutralizing activities after secondary DENV immunization. These findings have implications for alternative strategies for DENV vaccination. Certain TS antibodies were recently discovered to contribute to the monotypic neutralizing activity and protection after primary DENV infection; our findings of the complexity of neutralizing activities after secondary immunization/infection provide new insights for neutralizing antibodies as surrogates of protection.

Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 88 ◽  
Author(s):  
Jisang Park ◽  
Hyun-Young Lee ◽  
Ly Tuan Khai ◽  
Nguyen Thi Thu Thuy ◽  
Le Quynh Mai ◽  
...  

Dengue virus (DENV) comprises four serotypes in the family Flaviviridae and is a causative agent of dengue-related diseases, including dengue fever. Dengue fever is generally a self-limited febrile illness. However, secondary infection of patients with a suboptimal antibody (Ab) response provokes life-threatening severe dengue hemorrhagic fever or dengue shock syndrome. To develop a potent candidate subunit vaccine against DENV infection, we developed the EDII-cEDIII antigen, which contains partial envelope domain II (EDII) including the fusion loop and BC loop epitopes together with consensus envelope domain III (cEDIII) of all four serotypes of DENV. We purified Ab from mice after immunization with EDII-cEDIII or cEDIII and compared their virus neutralization and Ab-dependent enhancement of DENV infection. Anti-EDII-cEDIII Ab showed stronger neutralizing activity and lower Ab-dependent peak enhancement of DENV infection compared with anti-cEDIII Ab. Following injection of Ab-treated DENV into AG129 mice, anti-EDII-cEDIII Ab ameliorated DENV infection in tissues with primary and secondary infection more effectively than anti-cEDIII Ab. In addition, anti-EDII-cEDIII Ab protected against DENV1, 2, and 4 challenge. We conclude that EDII-cEDIII induces neutralizing and protective Abs, and thus, shows promise as a candidate subunit vaccine for DENV infection.


2016 ◽  
Vol 113 (3) ◽  
pp. 728-733 ◽  
Author(s):  
Leah C. Katzelnick ◽  
Magelda Montoya ◽  
Lionel Gresh ◽  
Angel Balmaseda ◽  
Eva Harris

The four dengue virus serotypes (DENV1–4) are mosquito-borne flaviviruses that infect ∼390 million people annually; up to 100 million infections are symptomatic, and 500,000 cases progress to severe disease. Exposure to a heterologous DENV serotype, the specific infecting DENV strains, and the interval of time between infections, as well as age, ethnicity, genetic polymorphisms, and comorbidities of the host, are all risk factors for severe dengue. In contrast, neutralizing antibodies (NAbs) are thought to provide long-lived protection against symptomatic infection and severe dengue. The objective of dengue vaccines is to provide balanced protection against all DENV serotypes simultaneously. However, the association between homotypic and heterotypic NAb titers and protection against symptomatic infection remains poorly understood. Here, we demonstrate that the titer of preinfection cross-reactive NAbs correlates with reduced likelihood of symptomatic secondary infection in a longitudinal pediatric dengue cohort in Nicaragua. The protective effect of NAb titers on infection outcome remained significant when controlled for age, number of years between infections, and epidemic force, as well as with relaxed or more stringent criteria for defining inapparent DENV infections. Further, individuals with higher NAb titers immediately after primary infection had delayed symptomatic infections compared with those with lower titers. However, overall NAb titers increased modestly in magnitude and remained serotype cross-reactive in the years between infections, possibly due to reexposure. These findings establish that anti-DENV NAb titers correlate with reduced probability of symptomatic DENV infection and provide insights into longitudinal characteristics of antibody-mediated immunity to DENV in an endemic setting.


2013 ◽  
Vol 87 (23) ◽  
pp. 12562-12575 ◽  
Author(s):  
Wen-Yang Tsai ◽  
Chih-Yun Lai ◽  
Yi-Chieh Wu ◽  
Hong-En Lin ◽  
Carolyn Edwards ◽  
...  

The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies (Abs) and vaccine development. Previous studies of human dengue-immune sera reported that a significant proportion of anti-E Abs, known as group-reactive (GR) Abs, were cross-reactive to all four DENV serotypes and to one or more other flaviviruses. Based on studies of mouse anti-E monoclonal antibodies (MAbs), GR MAbs were nonneutralizing or weakly neutralizing compared with type-specific MAbs; a GR response was thus not regarded as important for vaccine strategy. We investigated the epitopes, binding avidities, and neutralization potencies of 32 human GR anti-E MAbs. In addition to fusion loop (FL) residues in E protein domain II, human GR MAbs recognized an epitope involving both FL and bc loop residues in domain II. The neutralization potencies and binding avidities of GR MAbs derived from secondary DENV infection were stronger than those derived from primary infection. GR MAbs derived from primary DENV infection primarily blocked attachment, whereas those derived from secondary infection blocked DENV postattachment. Analysis of the repertoire of anti-E MAbs derived from patients with primary DENV infection revealed that the majority were GR, low-avidity, and weakly neutralizing MAbs, whereas those from secondary infection were primarily GR, high-avidity, and potently neutralizing MAbs. Our findings suggest that the weakly neutralizing GR anti-E Abs generated from primary DENV infection become potently neutralizing MAbs against the four serotypes after secondary infection. The observation that the dengue immune status of the host affects the quality of the cross-reactive Abs generated has implications for new strategies for DENV vaccination.


2011 ◽  
Vol 14 (3) ◽  
pp. 400 ◽  
Author(s):  
Ravindra B Malabadi ◽  
Advaita Ganguly ◽  
Jaime A Teixeira da Silva ◽  
Archana Parashar ◽  
Mavanur R Suresh ◽  
...  

ABSTRACT - This review highlights the advantages and current status of plant-derived vaccine development with special reference to the dengue virus. There are numerous problems involved in dengue vaccine development, and there is no vaccine against all four dengue serotypes. Dengue vaccine development using traditional approaches has not been satisfactory in terms of inducing neutralizing antibodies. Recently, these issues were addressed by showing a very good response to inducing neutralizing antibodies by plant-derived dengue vaccine antigens. This indicates the feasibility of using plant-derived vaccine antigens as a low-cost method to combat dengue and other infectious diseases. The application of new methods and strategies such as dendritic cell targeting in cancer therapy, severe acute respiratory syndrome, tuberculosis, human immune deficiency virus, and malaria might play an important role. These new methods are more efficient than traditional protocols. It is expected that in the near future, plant-derived vaccine antigens or antibodies will play an important role in the control of human infectious diseases. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2014 ◽  
Vol 95 (3) ◽  
pp. 591-600 ◽  
Author(s):  
Meng Ling Moi ◽  
Tomohiko Takasaki ◽  
Tsutomu Omatsu ◽  
Shinichiro Nakamura ◽  
Yuko Katakai ◽  
...  

There are four dengue virus (DENV) serotypes. Primary infection with one does not confer protective immunity against the others. We have reported previously that the marmoset (Callithrix jacchus) is a useful primary DENV infection model. It has been reported that secondary DENV infection with a heterotypic serotype induces viraemia kinetics and antibody responses that differ from those in primary infection. Thus, it is important to determine the utility of the marmoset as a model for secondary DENV infection. Marmosets were infected with heterologous DENV by secondary inoculation, and viraemia kinetics and antibody responses were analysed. The marmosets consistently developed high levels of viraemia after the secondary inoculation with heterologous DENV serotypes. IgM responses were lower compared with primary inoculation responses, whilst IgG responses were rapid and high. Neutralizing activities, which possessed serotype cross-reactive activities, were detected as early as 4 days after inoculation. In addition, infectious viraemia titres were higher when assayed with Fcγ receptor-expressing baby hamster kidney (BHK) cells than when assayed with conventional BHK cells, suggesting the presence of infectious virus–antibody immune complexes. After secondary infection with heterotypic DENV, the marmosets demonstrated viraemia kinetics, IgM and IgG responses, and high levels of serotype cross-reactive neutralizing antibody responses, all of which were consistent with secondary DENV infection in humans. The results indicate the marmoset as a useful animal for studying secondary, as well as primary, DENV infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luis Alberto Sanchez-Vargas ◽  
Kathryn B. Anderson ◽  
Anon Srikiatkhachorn ◽  
Jeffrey R. Currier ◽  
Heather Friberg ◽  
...  

Memory T cells resulting from primary dengue virus (DENV) infection are hypothesized to influence the clinical outcome of subsequent DENV infection. However, the few studies involving prospectively collected blood samples have found weak and inconsistent associations with outcome and variable temporal trends in DENV-specific memory T cell responses between subjects. This study used both ex-vivo and cultured ELISPOT assays to further evaluate the associations between DENV serotype-cross-reactive memory T cells and severity of secondary infection. Using ex-vivo ELISPOT assays, frequencies of memory T cells secreting IFN-γ in response to DENV structural and non-structural peptide pools were low in PBMC from multiple time points prior to symptomatic secondary DENV infection and showed a variable response to infection. There were no differences in responses between subjects who were not hospitalized (NH, n=6) and those who were hospitalized with dengue hemorrhagic fever (hDHF, n=4). In contrast, responses in cultured ELISPOT assays were more reliably detectable prior to secondary infection and showed more consistent increases after infection. Responses in cultured ELISPOT assays were higher in individuals with hDHF (n=8) compared to NH (n=9) individuals before the secondary infection, with no difference between these groups after infection. These data demonstrate an association of pre-existing DENV-specific memory responses with the severity of illness in subsequent DENV infection, and suggest that frequencies of DENV-reactive T cells measured after short-term culture may be of particular importance for assessing the risk for more severe dengue disease.


2016 ◽  
Author(s):  
T. Alex Perkins ◽  
Robert C. Reiner ◽  
Guido España ◽  
Quirine A. ten Bosch ◽  
Amit Verma ◽  
...  

ABSTRACTGiven the limited effectiveness of strategies based solely on vector control to reduce dengue virus (DENV) transmission, it is expected that an effective vaccine could play a pivotal role in reducing the global disease burden of dengue. Of several dengue vaccines under development, Dengvaxia® from Sanofi Pasteur recently became the first to become licensed in select countries and to achieve WHO recommendation for use in certain settings, despite the fact that a number of uncertainties about its profile complicate projections of its public health impact. We used a stochastic, agent-based model for DENV transmission to perform simulations of the public health impact of dengue vaccines in light of two key uncertainties: (1) “statistical uncertainty” about the numerical value of the vaccine’s efficacy against disease, and (2) “biological uncertainty” about the extent to which its efficacy against disease derives from the amelioration of symptoms, blocking of DENV infection, or some combination thereof. Simulations of a generic dengue vaccine showed that the proportion of disease episodes averted following 20 years of routine vaccination of nine-year olds at 80% coverage was sensitive to both the numerical value of vaccine efficacy and to the extent to which efficacy derives from blocking of DENV infection. Simulations of a vaccine resembling Dengvaxia® took into account that vaccine trial results substantially reduced statistical uncertainty but did not address biological uncertainty, resulting in the proportion of disease episodes averted being more sensitive to biological uncertainty than to statistical uncertainty. Taken together, our results indicate limitations associated with the use of symptomatic disease as the primary endpoint of dengue vaccine trials and highlight the importance of considering multiple forms of uncertainty in projections of a vaccine’s public health impact.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Takeshi Kurosu ◽  
Keiko Hanabara ◽  
Azusa Asai ◽  
Sabar Pambudi ◽  
Supranee Phanthanawiboon ◽  
...  

AbstractIn a secondary dengue virus (DENV) infection, the presence of non-neutralizing antibodies (Abs), developed during a previous infection with a different DENV serotype, is thought to worsen clinical outcomes by enhancing viral production. This phenomenon is called antibody-dependent enhancement (ADE) of infection, and it has delayed the development of therapeutic Abs and vaccines against DENV, as they must be evaluated for the potential to induce ADE. Unfortunately, limited replication of DENV clinical isolates in vitro and in experimental animals hinders this evaluation process. We have, therefore, constructed a recombinant chimeric flavivirus (DV2ChimV), which carries premembrane (prM) and envelope (E) genes of type 2 DENV (DENV-2) R05-624 clinical (Thai) isolate in a backbone of Japanese encephalitis virus (Nakayama strain). DENV E-protein is the most important viral target, not only for neutralizing Abs, but also for infection-enhancing Abs. In contrast to DENV-2 R05-624, DV2ChimV replicated efficiently in cultured mammalian cells and was lethal in interferon-α/β–γ-receptor double-knockout mice. With DV2ChimV, we were able to perform neutralization assays, in vitro and in vivo ADE assays, and in vivo protection assays. These results suggest that the chimeric virus is a powerful tool for evaluation of Abs against DENV.


2018 ◽  
Vol 92 (12) ◽  
pp. e00440-18 ◽  
Author(s):  
Veronique Barban ◽  
Nathalie Mantel ◽  
Aymeric De Montfort ◽  
Anke Pagnon ◽  
Fabrine Pradezynski ◽  
...  

ABSTRACTRecent data obtained with the live-attenuated tetravalent dengue CYD-TDV vaccine showed higher protective efficacy against dengue virus type 4 (DENV-4) than against DENV-2. In contrast, results from previous studies in nonhuman primates predicted comparable high levels of protection against each serotype. Maximum viral loads achieved in macaques by subcutaneous inoculation of DENV are generally much lower than those observed in naturally dengue virus-infected humans. This may contribute to an overestimation of vaccine efficacy. Using more-stringent DENV infection conditions consisting of the intravenous inoculation of 10750% cell culture infectious doses (CCID50) in CYD-TDV-vaccinated macaques, complete protection (i.e., undetectable viral RNA) was achieved in all 6 monkeys challenged with DENV-4 and in 6/18 of those challenged with DENV-2, including transiently positive animals. All other infected macaques (12/18) developed sustained DENV-2 RNAemia (defined as detection of viral RNA in serum samples) although 1 to 3 log10units below the levels achieved in control animals. Similar results were obtained with macaques immunized with either CYD-TDV or monovalent (MV) CYD-2. This suggests that partial protection against DENV-2 was mediated mainly by CYD-2 and not by the other CYDs. Postchallenge induction of strong anamnestic responses, suggesting efficient vaccine priming, likely contributed to the reduction of DENV-2 RNAemia. Finally, an inverse correlation between DENV RNA titers postchallenge and vaccine-induced homotypic neutralizing antibody titers prechallenge was found, emphasizing the key role of these antibodies in controlling DENV infection. Collectively, these data show better agreement with reported data on CYD-TDV clinical vaccine efficacy against DENV-2 and DENV-4. Despite inherent limitations of the nonhuman primate model, these results reinforce its value in assessing the efficacy of dengue vaccines.IMPORTANCEThe nonhuman primate (NHP) model is the most widely recognized tool for assessing the protective activity of dengue vaccine candidates, based on the prevention of postinfection DENV viremia. However, its use has been questioned after the recent CYD vaccine phase III trials, in which moderate protective efficacy against DENV-2 was reported, despite full protection against DENV-2 viremia previously being demonstrated in CYD-vaccinated monkeys. Using a reverse translational approach, we show here that the NHP model can be improved to achieve DENV-2 protection levels that show better agreement with clinical efficacy. With this new model, we demonstrate that the injection of the CYD-2 component of the vaccine, in either a monovalent or a tetravalent formulation, is able to reduce DENV-2 viremia in all immunized animals, and we provide clear statistical evidence that DENV-2-neutralizing antibodies are able to reduce viremia in a dose-dependent manner.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 470 ◽  
Author(s):  
Lucas Wilken ◽  
Guus F. Rimmelzwaan

The four serotypes of dengue virus are the most widespread causes of arboviral disease, currently placing half of the human population at risk of infection. Pre-existing immunity to one dengue virus serotype can predispose to severe disease following secondary infection with a different serotype. The phenomenon of immune enhancement has complicated vaccine development and likely explains the poor long-term safety profile of a recently licenced dengue vaccine. Therefore, alternative vaccine strategies should be considered. This review summarises studies dissecting the adaptive immune responses to dengue virus infection and (experimental) vaccination. In particular, we discuss the roles of (i) neutralising antibodies, (ii) antibodies to non-structural protein 1, and (iii) T cells in protection and pathogenesis. We also address how these findings could translate into next-generation vaccine approaches that mitigate the risk of enhanced dengue disease. Finally, we argue that the development of a safe and efficacious dengue vaccine is an attainable goal.


Sign in / Sign up

Export Citation Format

Share Document