scholarly journals The Amino Terminus of Varicella-Zoster Virus (VZV) Glycoprotein E Is Required for Binding to Insulin-Degrading Enzyme, a VZV Receptor

2007 ◽  
Vol 81 (16) ◽  
pp. 8525-8532 ◽  
Author(s):  
Qingxue Li ◽  
Tammy Krogmann ◽  
Mir A. Ali ◽  
Wei-Jen Tang ◽  
Jeffrey I. Cohen

ABSTRACT Varicella-zoster virus (VZV) glycoprotein E (gE) is required for VZV infection. Although gE is well conserved among alphaherpesviruses, the amino terminus of VZV gE is unique. Previously, we showed that gE interacts with insulin-degrading enzyme (IDE) and facilitates VZV infection and cell-to-cell spread of the virus. Here we define the region of VZV gE required to bind IDE. Deletion of amino acids 32 to 71 of gE, located immediately after the predicted signal peptide, resulted in loss of the ability of gE to bind IDE. A synthetic peptide corresponding to amino acids 24 to 50 of gE blocked its interaction with IDE in a concentration-dependent manner. However, a chimeric gE in which amino acids 1 to 71 of VZV gE were fused to amino acids 30 to 545 of herpes simplex virus type 2 gE did not show an increased level of binding to IDE compared with that of full-length HSV gE. Thus, amino acids 24 to 71 of gE are required for IDE binding, and the secondary structure of gE is critical for the interaction. VZV gE also forms a heterodimer with glycoprotein gI. Deletion of amino acids 163 to 208 of gE severely reduced its ability to form a complex with gI. The amino portion of IDE, as well an IDE mutant in the catalytic domain of the protein, bound to gE. Therefore, distinct motifs of VZV gE are important for binding to IDE or to gI.

2003 ◽  
Vol 77 (7) ◽  
pp. 4191-4204 ◽  
Author(s):  
Tracy Jo Pasieka ◽  
Lucie Maresova ◽  
Charles Grose

ABSTRACT The trafficking of varicella-zoster virus (VZV) gH was investigated under both infection and transfection conditions. In initial endocytosis assays performed in infected cells, the three glycoproteins gE, gI, and gB served as positive controls for internalization from the plasma membrane. Subsequently, we discovered that gH in VZV-infected cells was also internalized and followed a similar trafficking pattern. This observation was unexpected because all herpesvirus gH homologues have short endodomains not known to contain trafficking motifs. Further investigation demonstrated that VZV gH, when expressed alone with its chaperone gL, was capable of endocytosis in a clathrin-dependent manner, independent of gE, gI, or gB. Upon inspection of the short gH cytoplasmic tail, we discovered a putative tyrosine-based endocytosis motif (YNKI). When the tyrosine was replaced with an alanine, endocytosis of gH was blocked. Utilizing an endocytosis assay dependent on biotin labeling, we further documented that endocytosis of VZV gH was antibody independent. In control experiments, we showed that gE, gI, and gB also internalized in an antibody-independent manner. Alignment analysis of the VZV gH cytoplasmic tail to other herpesvirus gH homologues revealed two important findings: (i) herpes simplex virus type 1 and 2 homologues lacked an endocytosis motif, while all other alphaherpesvirus gH homologues contained a potential motif, and (ii) the VZV gH and simian varicella virus gH cytoplasmic tails were likely longer in length (18 amino acids) than predicted in the original sequence analyses (12 and 16 amino acids, respectively). The longer tails provided the proper context for a functional endocytosis motif.


PLoS ONE ◽  
2010 ◽  
Vol 5 (6) ◽  
pp. e11327 ◽  
Author(s):  
Qingxue Li ◽  
Mir A. Ali ◽  
Kening Wang ◽  
Dean Sayre ◽  
Frederick G. Hamel ◽  
...  

2002 ◽  
Vol 76 (2) ◽  
pp. 591-599 ◽  
Author(s):  
Thomas C. Heineman ◽  
Susan L. Hall

ABSTRACT To study the function of the varicella-zoster virus (VZV) gB cytoplasmic domain during viral infection, we produced a VZV recombinant virus that expresses a truncated form of gB lacking the C-terminal 36 amino acids of its cytoplasmic domain (VZV gB-36). VZV gB-36 replicates in noncomplementing cells and grows at a rate similar to that of native VZV. However, cells infected with VZVgB-36 form extensive syncytia compared to the relatively small syncytia formed during native VZV infection. In addition, electron microscopy shows that very little virus is present on the surfaces of cells infected with VZV gB-36, while cells infected with native VZV exhibit abundant virions on the cell surface. The C-terminal 36 amino acids of the gB cytoplasmic domain have been shown in transfection-based experiments to contain both an endoplasmic reticulum-to-Golgi transport signal (the C-terminal 17 amino acids) and a consensus YXXφ (where Y is tyrosine, X is any amino acid, and φ is any bulky hydrophobic amino acid) signal sequence (YSRV) that mediates the internalization of gB from the plasma membrane. As predicted based on these data, gB-36 expressed during the infection of cultured cells is transported inefficiently to the Golgi. Despite lacking the YSRV signal sequence, gB-36 is internalized from the plasma membrane; however, in contrast to native gB, it fails to localize to the Golgi. Therefore, the C-terminal 36 amino acids of the VZV gB cytoplasmic domain are required for normal viral egress and for both the pre- and post-Golgi transport of gB.


1999 ◽  
Vol 1999 ◽  
pp. 212-212 ◽  
Author(s):  
C. Atasoglu ◽  
C.J. Newbold ◽  
R.J. Wallace

Ammonia is thought to be the main source of nitrogen for protein synthesis by the rumen microorganisms, but peptides and amino acids derived from protein degradation are also incorporated into microbial protein. Recent experiments carried out by Atasogluet al.(1998) demonstrated that preformed amino acids decrease the uptake of ammonia into microbial protein and microbial amino acids in a concentration-dependent manner. However, little is known about how rumen ammonia concentrations affect ammonia uptake into microbial protein. The present study was undertaken to determine the influence of rumen ammonia concentrations on ammonia incorporation andde novosynthesis of individual amino acids by the mixed rumen microorganismsin vitro.


2004 ◽  
Vol 78 (22) ◽  
pp. 12406-12415 ◽  
Author(s):  
Jennifer Moffat ◽  
Chengjun Mo ◽  
Jason J. Cheng ◽  
Marvin Sommer ◽  
Leigh Zerboni ◽  
...  

ABSTRACT Varicella-zoster virus (VZV) glycoprotein E (gE) is essential for VZV replication. To further analyze the functions of gE in VZV replication, a full deletion and point mutations were made in the 62-amino-acid (aa) C-terminal domain. Targeted mutations were introduced in YAGL (aa 582 to 585), which mediates gE endocytosis, AYRV (aa 568 to 571), which targets gE to the trans-Golgi network (TGN), and SSTT, an “acid cluster” comprising a phosphorylation motif (aa 588 to 601). Substitutions Y582G in YAGL, Y569A in AYRV, and S593A, S595A, T596A, and T598A in SSTT were introduced into the viral genome by using VZV cosmids. These experiments demonstrated a hierarchy in the contributions of these C-terminal motifs to VZV replication and virulence. Deletion of the gE C terminus and mutation of YAGL were lethal for VZV replication in vitro. Mutations of AYRV and SSTT were compatible with recovery of VZV, but the AYRV mutation resulted in rapid virus spread in vitro and the SSTT mutation resulted in higher virus titers than were observed for the parental rOka strain. When the rOka-gE-AYRV and rOka-gE-SSTT mutants were evaluated in skin and T-cell xenografts in SCIDhu mice, interference with TGN targeting was associated with substantial attenuation, especially in skin, whereas the SSTT mutation did not alter VZV infectivity in vivo. These results provide the first information about how targeted mutations of this essential VZV glycoprotein affect viral replication in vitro and VZV virulence in dermal and epidermal cells and T cells within intact tissue microenvironments in vivo.


Sign in / Sign up

Export Citation Format

Share Document