scholarly journals Epstein-Barr Virus Shed in Saliva Is High in B-Cell-Tropic Glycoprotein gp42

2006 ◽  
Vol 80 (14) ◽  
pp. 7281-7283 ◽  
Author(s):  
R. Jiang ◽  
R. S. Scott ◽  
L. M. Hutt-Fletcher

ABSTRACT Epstein-Barr virus is an orally transmitted human herpesvirus that infects epithelial cells and establishes latency in memory B lymphocytes. Movement of virus between the two cell types is facilitated by changes in amounts of an envelope glycoprotein, gp42, which are effected by interaction of gp42 with HLA class II in a B cell. Here we used the differential ability of virus to bind to CD21-positive B cells and CD21-negative epithelial cells, which is also influenced by levels of gp42, to determine that the majority of virus shed in saliva is derived from an HLA class II-negative cell.

2000 ◽  
Vol 74 (14) ◽  
pp. 6324-6332 ◽  
Author(s):  
Sara J. Molesworth ◽  
Cathleen M. Lake ◽  
Corina M. Borza ◽  
Susan M. Turk ◽  
Lindsey M. Hutt-Fletcher

ABSTRACT Entry of Epstein-Barr virus (EBV) into B cells is initiated by attachment of glycoprotein gp350 to the complement receptor type 2 (CR2). A complex of three glycoproteins, gH, gL, and gp42, is subsequently required for penetration. Gp42 binds to HLA class II, which functions as an entry mediator or coreceptor and, by analogy with other herpesviruses, gH is then thought to be involved virus-cell fusion. However, entry of virus into epithelial cells is thought to be different. It can be initiated by attachment by an unknown glycoprotein in the absence of CR2. There is no interaction between gp42 and HLA class II and instead a distinct complex of only the two glycoproteins gH and gL interacts with a novel entry mediator. Again, by analogy with other viruses gH is thought to be critical to fusion. To investigate further the different roles of gH in infection of the two cell types and to examine its influence on the assembly of the gH-gL-gp42 complex, we constructed two viruses, one in which the gH open reading frame was interrupted by a cassette expressing a neomycin resistance gene and the gene for green fluorescent protein and one as a control in which the neighboring nonessential thymidine kinase gene was interrupted with the same cassette. Virus lacking gH exited from cells normally, although loss of gH resulted in rapid turnover of gL and gp42 as well. The virus bound normally to B lymphocytes but could not infect them unless cells and bound virus were treated with polyethylene glycol to induce fusion. In contrast, virus that lacked the gH complex was impaired in attachment to epithelial cells and the effects of monoclonal antibodies to gH implied that this resulted from loss of gH rather than other members of the complex. These results suggest a role for gH in both attachment and penetration into epithelial cells.


1994 ◽  
Vol 24 (6) ◽  
pp. 1467-1470 ◽  
Author(s):  
Qin Zhang ◽  
Louise Brooks ◽  
Pierre Busson ◽  
Fred Wang ◽  
Dominique Charron ◽  
...  

mBio ◽  
2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Cynthia L. Rowe ◽  
Jia Chen ◽  
Theodore S. Jardetzky ◽  
Richard Longnecker

ABSTRACTWe recently described the architecture of the Epstein-Barr virus (EBV) fusion-triggering complex consisting of the EBV B cell receptor human leukocyte antigen (HLA) class II and the EBV-encoded proteins gp42 and gH/gL. The architecture of this structure positioned the main body of gp42, comprising the C-type lectin domain (CTLD), away from the membrane and distant from where the membrane-bound form of gp42 might be tethered. gp42 is a type II membrane glycoprotein, with functional gp42 formed by cleavage near the gp42 amino-terminal transmembrane domain. This cleavage results in an approximately 50-amino-acid unstructured region that is responsible for binding gH/gL with nanomolar affinity. Our previous studies had shown that membrane-bound gp42 is not functional in B cell fusion. To investigate whether we could restore gp42 function by extending it from the membrane, we introduced one, two, and four structured immunoglobulin-like domains from muscle protein titin into a membrane-bound form of gp42 and tested function in binding to gHgL and HLA class II and function in fusion. We hypothesized that cleavage of gp42 generates a soluble functional form that relieves steric hindrance imposed on gHgL by membrane-bound gp42. All of the linker mutants had a dominant-negative effect on gp42 function, indicating that gp42 fusion function could not be restored simply by the addition of one to four titin domains.IMPORTANCEEpstein-Barr virus (EBV) is associated with numerous diseases from benign mononucleosis to Burkitt’s and Hodgkin’s lymphoma, nasopharyngeal and gastric carcinoma, and lymphoproliferative disorders in patients with immune dysfunction resulting from immune suppression. Among the glycoproteins important for fusion, gp42, along with gH/gL, determines EBV tropism between epithelial and B cells. The function of gp42 is dependent on N-terminal cleavage, since membrane-bound gp42 cannot mediate fusion. We further investigated whether insertion of a linker into membrane-bound gp42 would relieve steric hindrance imposed on membrane-bound gp42 and restore fusion function. However, adding one, two, or four structured immunoglobulin-like domains to membrane gp42 did not restore fusion activity, indicating that the architecture and membrane orientation of the B cell fusion-triggering complex of EBV may be easily perturbed and that gp42 cleavage is essential for B cell fusion.


1998 ◽  
Vol 72 (7) ◽  
pp. 5552-5558 ◽  
Author(s):  
Xi Wang ◽  
William J. Kenyon ◽  
Qingxue Li ◽  
Jürgen Müllberg ◽  
Lindsey M. Hutt-Fletcher

ABSTRACT The Epstein-Barr virus (EBV) gH-gL complex includes a third glycoprotein, gp42. gp42 binds to HLA class II on the surfaces of B lymphocytes, and this interaction is essential for infection of the B cell. We report here that, in contrast, gp42 is dispensable for infection of epithelial cell line SVKCR2. A soluble form of gp42, gp42.Fc, can, however, inhibit infection of both cell types. Soluble gp42 can interact with EBV gH and gL and can rescue the ability of virus lacking gp42 to transform B cells, suggesting that a gH-gL-gp42.Fc complex can be formed by extrinsic addition of the soluble protein. Truncated forms of gp42.Fc that retain the ability to bind HLA class II but that cannot interact with gH and gL still inhibit B-cell infection by wild-type virus but cannot inhibit infection of SVKCR2 cells or rescue the ability of recombinant gp42-negative virus to transform B cells. An analysis of wild-type virions indicates the presence of more gH and gL than gp42. To explain these results, we describe a model in which wild-type EBV virions are proposed to contain two types of gH-gL complexes, one that includes gp42 and one that does not. We further propose that these two forms of the complex have mutually exclusive abilities to mediate the infection of B cells and epithelial cells. Conversion of one to the other concurrently alters the ability of virus to infect each cell type. The model also suggests that epithelial cells may express a molecule that serves the same cofactor function for this cell type as HLA class II does for B cells and that the gH-gL complex interacts directly with this putative epithelial cofactor.


2021 ◽  
Vol 17 (11) ◽  
pp. e1010045
Author(s):  
Nicholas Van Sciver ◽  
Makoto Ohashi ◽  
Dhananjay M. Nawandar ◽  
Nicholas P. Pauly ◽  
Denis Lee ◽  
...  

Epstein-Barr virus (EBV) is a human herpesvirus that causes infectious mononucleosis and contributes to both B-cell and epithelial-cell malignancies. EBV-infected epithelial cell tumors, including nasopharyngeal carcinoma (NPC), are largely composed of latently infected cells, but the mechanism(s) maintaining viral latency are poorly understood. Expression of the EBV BZLF1 (Z) and BRLF1 (R) encoded immediate-early (IE) proteins induces lytic infection, and these IE proteins activate each other’s promoters. ΔNp63α (a p53 family member) is required for proliferation and survival of basal epithelial cells and is over-expressed in NPC tumors. Here we show that ΔNp63α promotes EBV latency by inhibiting activation of the BZLF1 IE promoter (Zp). Furthermore, we find that another p63 gene splice variant, TAp63α, which is expressed in some Burkitt and diffuse large B cell lymphomas, also represses EBV lytic reactivation. We demonstrate that ΔNp63α inhibits the Zp promoter indirectly by preventing the ability of other transcription factors, including the viral IE R protein and the cellular KLF4 protein, to activate Zp. Mechanistically, we show that ΔNp63α promotes viral latency in undifferentiated epithelial cells both by enhancing expression of a known Zp repressor protein, c-myc, and by decreasing cellular p38 kinase activity. Furthermore, we find that the ability of cis-platinum chemotherapy to degrade ΔNp63α contributes to the lytic-inducing effect of this agent in EBV-infected epithelial cells. Together these findings demonstrate that the loss of ΔNp63α expression, in conjunction with enhanced expression of differentiation-dependent transcription factors such as BLIMP1 and KLF4, induces lytic EBV reactivation during normal epithelial cell differentiation. Conversely, expression of ΔNp63α in undifferentiated nasopharyngeal carcinoma cells and TAp63α in Burkitt lymphoma promotes EBV latency in these malignancies.


1998 ◽  
Vol 72 (1) ◽  
pp. 158-163 ◽  
Author(s):  
Xi Wang ◽  
Lindsey M. Hutt-Fletcher

ABSTRACT The Epstein-Barr virus gH-gL complex includes a third glycoprotein, gp42, which is the product of the BZLF2 open reading frame (ORF). gp42 has been implicated as critical to infection of the B lymphocyte by virtue of its interaction with HLA class II on the B-cell surface. A neutralizing antibody that reacts with gp42 inhibits virus-cell fusion and blocks binding of gp42 to HLA class II; antibody to HLA class II can inhibit infection, and B cells that lack HLA class II can only be infected if HLA class II expression is restored. To confirm whether gp42 is an essential component of the virion, we derived a recombinant virus with a selectable marker inserted into the BZLF2 ORF to interrupt expression of the protein. A complex of gH and gL was expressed by the recombinant virus in the absence of gp42. Recombinant virus egressed from the cell normally and could bind to receptor-positive cells. It had, however, lost the ability to infect or transform B lymphocytes. Treatment with polyethylene glycol restored the infectivity of recombinant virus, confirming that gp42 is essential for penetration of the B-cell membrane.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Lisa Grossman ◽  
Chris Chang ◽  
Joanne Dai ◽  
Pavel A. Nikitin ◽  
Dereje D. Jima ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out. Epstein-Barr virus (EBV), an oncogenic herpesvirus, infects and transforms primary B cells into immortal lymphoblastoid cell lines (LCLs), providing a model for EBV-mediated tumorigenesis. EBV transformation stimulates robust homotypic aggregation, indicating that EBV induces molecules that mediate cell-cell adhesion. We report that EBV potently induced expression of the adhesion molecule CD226, which is not normally expressed on B cells. We found that early after infection of primary B cells, EBV promoted an increase in CD226 mRNA and protein expression. CD226 levels increased further from early proliferating EBV-positive B cells to LCLs. We found that CD226 expression on B cells was independent of B-cell activation as CpG DNA failed to induce CD226 to the extent of EBV infection. CD226 expression was high in EBV-infected B cells expressing the latency III growth program, but low in EBV-negative and EBV latency I-infected B-lymphoma cell lines. We validated this correlation by demonstrating that the latency III characteristic EBV NF-κB activator, latent membrane protein 1 (LMP1), was sufficient for CD226 upregulation and that CD226 was more highly expressed in lymphomas with increased NF-κB activity. Finally, we found that CD226 was not important for LCL steady-state growth, survival in response to apoptotic stress, homotypic aggregation, or adhesion to activated endothelial cells. These findings collectively suggest that EBV induces expression of a cell adhesion molecule on primary B cells that may play a role in the tumor microenvironment of EBV-associated B-cell malignancies or facilitate adhesion in the establishment of latency in vivo. IMPORTANCE Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009783
Author(s):  
Nicholas Van Sciver ◽  
Makoto Ohashi ◽  
Nicholas P. Pauly ◽  
Jillian A. Bristol ◽  
Scott E. Nelson ◽  
...  

The Epstein-Barr virus (EBV) human herpesvirus is associated with B-cell and epithelial-cell malignancies, and both the latent and lytic forms of viral infection contribute to the development of EBV-associated tumors. Here we show that the Hippo signaling effectors, YAP and TAZ, promote lytic EBV reactivation in epithelial cells. The transcriptional co-activators YAP/TAZ (which are inhibited by Hippo signaling) interact with DNA-binding proteins, particularly TEADs, to induce transcription. We demonstrate that depletion of either YAP or TAZ inhibits the ability of phorbol ester (TPA) treatment, cellular differentiation or the EBV BRLF1 immediate-early (IE) protein to induce lytic EBV reactivation in oral keratinocytes, and show that over-expression of constitutively active forms of YAP and TAZ reactivate lytic EBV infection in conjunction with TEAD family members. Mechanistically, we find that YAP and TAZ interact with, and activate, the EBV BZLF1 immediate-early promoter. Furthermore, we demonstrate that YAP, TAZ, and TEAD family members are expressed at much higher levels in epithelial cell lines in comparison to B-cell lines, and find that EBV infection of oral keratinocytes increases the level of activated (dephosphorylated) YAP and TAZ. Finally, we have discovered that lysophosphatidic acid (LPA), a known YAP/TAZ activator that plays an important role in inflammation, induces EBV lytic reactivation in epithelial cells through a YAP/TAZ dependent mechanism. Together these results establish that YAP/TAZ are powerful inducers of the lytic form of EBV infection and suggest that the ability of EBV to enter latency in B cells at least partially reflects the extremely low levels of YAP/TAZ and TEADs in this cell type.


2019 ◽  
Vol 6 (5) ◽  
Author(s):  
Peiling Zhang ◽  
Chen Zeng ◽  
Jiali Cheng ◽  
Jing Zhou ◽  
Jia Gu ◽  
...  

Abstract Background High loads of Epstein-Barr virus (EBV) in peripheral blood mononuclear cells (PBMCs) can be indicative of a broad spectrum of diseases, ranging from asymptomatic infection to fatal cancers. Methods We retrospectively investigated the EBV-infected cell types in PBMCs among 291 patients. Based on EBV-infected cell types, the clinical features and prognoses of 93 patients with EBV-associated (EBV+) T/natural killer (NK)–cell lymphoproliferative diseases (LPDs) T/NK-LPDs) were investigated over a 5-year period. Results Although B-cell-type infection was found in immunocompromised patients and patients with asymptomatic high EBV carriage, infectious mononucleosis, EBV+ B-cell LPDs and B-cell lymphomas, T-cell, NK-cell or multiple-cell-type infection in immunocompetent hosts were highly suggestive of EBV+ T/NK-LPDs, EBV+ T/NK-cell lymphomas, and aggressive NK-cell leukemia. Patients with non–B-cell infection had a poorer prognosis than those with B-cell-type infection. In our cohort, 79.6% of patients with EBV+ T/NK-LPDs were >18 years old, and NK cells were identified as EBV-infected cell type in 54.8%. Nearly half of patients with EBV+ T/NK-LPDs had genetic defects associated with immunodeficiency. However, hemophagocytic lymphohistiocytosis, and not genetic defects, was the only parameter correlated with poor prognosis of EBV+ T/NK-LPDs. Conclusions Determination of EBV-infected cell types among PBMCs is a valuable tool for the differential diagnosis of EBV+ hematological diseases. In this study, determination of Epstein-Barr virus-infected cell types in peripheral blood mononuclear cells of 291 patients with high Epstein-Barr virus loads were retrospectively investigated, which indicate it is a valuable tool for Epstein-Barr virus-associated hematological diseases.


Sign in / Sign up

Export Citation Format

Share Document