scholarly journals A Functional Interaction between Herpes Simplex Virus 1 Glycoprotein gH/gL Domains I and II and gD Is Defined by Using Alphaherpesvirus gH and gL Chimeras

2015 ◽  
Vol 89 (14) ◽  
pp. 7159-7169 ◽  
Author(s):  
Qing Fan ◽  
Richard Longnecker ◽  
Sarah A. Connolly

ABSTRACTWhereas most viruses require only a single protein to bind to and fuse with cells, herpesviruses use multiple glycoproteins to mediate virus entry, and thus communication among these proteins is required. For most alphaherpesviruses, the minimal set of viral proteins required for fusion with the host cell includes glycoproteins gD, gB, and a gH/gL heterodimer. In the current model of entry, gD binds to a cellular receptor and transmits a signal to gH/gL. This signal then triggers gB, the conserved fusion protein, to insert into the target membrane and refold to merge the viral and cellular membranes. We previously demonstrated that gB homologs from two alphaherpesviruses, herpes simplex virus 1 (HSV-1) and saimiriine herpesvirus 1 (SaHV-1), were interchangeable. In contrast, neither gD nor gH/gL functioned with heterotypic entry glycoproteins, indicating that gD and gH/gL exhibit an essential type-specific functional interaction. To map this homotypic interaction site on gH/gL, we generated HSV-1/SaHV-1 gH and gL chimeras. The functional interaction with HSV-1 gD mapped to the N-terminal domains I and II of the HSV-1 gH ectodomain. The core of HSV-1 gL that interacts with gH also was required for functional homotypic interaction. The N-terminal gH/gL domains I and II are the least conserved and may have evolved to support species-specific glycoprotein interactions.IMPORTANCEThe first step of the herpesvirus life cycle is entry into a host cell. A coordinated interaction among multiple viral glycoproteins is required to mediate fusion of the viral envelope with the cell membrane. The details of how these glycoproteins interact to trigger fusion are unclear. By swapping the entry glycoproteins of two alphaherpesviruses (HSV-1 and SaHV-1), we previously demonstrated a functional homotypic interaction between gD and gH/gL. To define the gH and gL requirements for homotypic interaction, we evaluated the function of a panel of HSV-1/SaHV-1 gH and gL chimeras. We demonstrate that domains I and II of HSV-1 gH are sufficient to promote a functional, albeit reduced, interaction with HSV-1 gD. These findings contribute to our model of how the entry glycoproteins cooperate to mediate herpesvirus entry into the cell.

mBio ◽  
2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Andrew T. David ◽  
Ahmad Saied ◽  
Anu Charles ◽  
Ramesh Subramanian ◽  
Vladimir N. Chouljenko ◽  
...  

ABSTRACTWe have shown that the herpes simplex virus 1 (HSV-1) gK gene is essential for efficient replication and spread in the corneal epithelium and trigeminal ganglion neuroinvasion in mice (A. T. David, A. Baghian, T. P. Foster, V. N. Chouljenko, and K. G. Kousoulas, Curr. Eye Res. 33:455–467, 2008). To further investigate the role of gK in neuronal infection, we utilized a microfluidic chamber system separating neuronal cell bodies and axonal termini. HSV-1 (McKrae) engineered virus constitutively expressing enhanced green fluorescence protein (GFP) was efficiently transmitted in both a retrograde and an anterograde manner. These results were corroborated by expression of virion structural proteins in either chamber, as well as detection of viral genomes and infectious viruses. In contrast, efficient infection of either chamber with a gK-null virus did not result in infection of the apposed chamber. These results show that gK is an important determinant in virion axonal infection. Moreover, the inability of the gK-null virus to be transmitted in an anterograde manner suggests that virions acquire cytoplasmic envelopes prior to entering axons.IMPORTANCEHerpes simplex virus 1 (HSV-1) enters mucosal epithelial cells and neurons via fusion of the viral envelope with cellular membranes, mediated by viral glycoprotein B (gB) in cooperation with other viral glycoproteins. Retrograde transport of virions to neuronal cell bodies (somata) establishes lifelong latent infection in ganglionic neurons. We have previously reported that gK binds gB and is required for gB-mediated membrane fusion (Jambunatathan et al., J. Virol. 85:12910–12918, 2011; V. N. Chouljenko, A. V. Iyer, S. Chowdhury, J. Kim, and K. G. Kousoulas, J. Virol. 84:8596–8606, 2010). In the current study, we constructed a recombinant virus with the gK gene deleted in the highly virulent ocular HSV-1 strain McKrae. This recombinant virus failed to infect rat ganglionic neuronal axons alone or cocultured with Vero cells in microfluidic chambers. In addition, lack of gK expression prevented anterograde transmission of virions. These results suggest that gK is a critical determinant for neuronal infection and transmission.


2009 ◽  
Vol 83 (22) ◽  
pp. 11624-11634 ◽  
Author(s):  
Tomomi Morimoto ◽  
Jun Arii ◽  
Michiko Tanaka ◽  
Tetsutaro Sata ◽  
Hiroomi Akashi ◽  
...  

ABSTRACT Us3 protein kinases encoded by herpes simplex virus 1 (HSV-1) and 2 (HSV-2) are serine/threonine protein kinases and play critical roles in viral replication and pathogenicity in vivo. In the present study, we investigated differences in the biological properties of HSV-1 and HSV-2 Us3 protein kinases and demonstrated that HSV-2 Us3 did not have some of the HSV-1 Us3 kinase functions, including control of nuclear egress of nucleocapsids, localization of UL31 and UL34, and cell surface expression of viral envelope glycoprotein B. In agreement with the observations that HSV-2 Us3 was less important for these functions, the effect of HSV-2 Us3 kinase activity on virulence in mice following intracerebral inoculation was much lower than that of HSV-1 Us3. Furthermore, we showed that alanine substitution in HSV-2 Us3 at a site (aspartic acid at position 147) corresponding to one that can be autophosphorylated in HSV-1 Us3 abolished HSV-2 Us3 kinase activity. Thus, the regulatory and functional effects of Us3 kinase activity are different between HSV-1 and HSV-2.


2020 ◽  
Author(s):  
Yangkun Shen ◽  
Zhoujie Ye ◽  
Xiangqian Zhao ◽  
Zhihua Feng ◽  
Jinfeng Chen ◽  
...  

ABSTRACTUpon HSV-1 infection, viral protein 16 (VP16), supported by Host Cell Factor C1 (HCFC1), is rapidly transported into the nucleus, and help to express a series of HSV-1 immediate-early proteins to begin its lytic replication. However, no direct evidence has shown if the HCFC1 deficiency can affect the proliferation of HSV-1 so far. Here, we showed that the HCFC1 deficiency led to a strong resistance to HSV-1 infection. Moreover, we identified Host Cell Factor C1 Regulator 1 (HCFC1R1) as a new host factor acting early in HSV infection for the transport of the HSV-1 capsid to the nucleus. The HCFC1R1 deficiency also led to a strong resistance to HSV-1 infection. The HCFC1R1 deficiency did not affect the attachment of HSV-1 to host cells but act early in HSV-1 infection by perturbing the formation of HCFC1/VP16 complex. Remarkably, in addition to wild-type HSV-1 infection, the host cells in the absence of either HCFC1 or HCFC1R1 showed strong resistant to the infection of TK-deficient HSV-1, which strain can course severe symptoms and tolerate to the current anti-HSV drug Acyclovir. Our data suggest that HCFC1 or HCFC1R1 may be used as the novel target for developing anti-HSV-1 therapies.IMPORTANCEHerpes simplex virus-1 (HSV-1) is widely spread in the human population and can cause a variety of herpetic diseases. Acyclovir, a guanosine analogue that targets the TK protein of HSV-1, is the first specific and selective anti-HSV-1 drug. However, the rapid emergence of resistant HSV-1 strains is occurring worldwide, endangering the efficacy of Acyclovir. Alternatively, targeting host factors is another strategy to stop HSV-1 infection. Unfortunately, although the HSV-1’s receptor, Nectin-1, was discovered in 1998, no effective antiviral drug to date has been developed by targeting Nectin-1. Targeting multiple pathways is the ultimate choice to prevent HSV-1 infection. Here we demonstrated that the deletion of HCFC1 or HCFC1R1 exhibits a strong inhibitory effect on both wild-type and TK-deficient HSV-1. Overall, we present evidence that HCFC1 or HCFC1R1 may be used as the novel target for developing anti-HSV-1 therapies with a defined mechanism of action.


2015 ◽  
Vol 90 (5) ◽  
pp. 2503-2513 ◽  
Author(s):  
Robert G. Abrisch ◽  
Tess M. Eidem ◽  
Petro Yakovchuk ◽  
Jennifer F. Kugel ◽  
James A. Goodrich

ABSTRACTLytic infection by herpes simplex virus 1 (HSV-1) triggers a change in many host cell programs as the virus strives to express its own genes and replicate. Part of this process is repression of host cell transcription by RNA polymerase II (Pol II), which also transcribes the viral genome. Here, we describe a global characterization of Pol II occupancy on the viral and host genomes in response to HSV-1 infection using chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). The data reveal near-complete loss of Pol II occupancy throughout host cell mRNA genes, in both their bodies and promoter-proximal regions. Increases in Pol II occupancy of host cell genes, which would be consistent with robust transcriptional activation, were not observed. HSV-1 infection induced a more potent and widespread repression of Pol II occupancy than did heat shock, another cellular stress that widely represses transcription. Concomitant with the loss of host genome Pol II occupancy, we observed Pol II covering the HSV-1 genome, reflecting a high level of viral gene transcription. Interestingly, the positions of the peaks of Pol II occupancy at HSV-1 and host cell promoters were different. The primary peak of Pol II occupancy at HSV-1 genes is ∼170 bp upstream of where it is positioned at host cell genes, suggesting that specific steps in transcription are regulated differently at HSV-1 genes than at host cell mRNA genes.IMPORTANCEWe investigated the effect of herpes simplex virus 1 (HSV-1) infection on transcription of host cell and viral genes by RNA polymerase II (Pol II). The approach we used was to determine how levels of genome-bound Pol II changed after HSV-1 infection. We found that HSV-1 caused a profound loss of Pol II occupancy across the host cell genome. Increases in Pol II occupancy were not observed, showing that no host genes were activated after infection. In contrast, Pol II occupied the entire HSV-1 genome. Moreover, the pattern of Pol II at HSV-1 genes differed from that on host cell genes, suggesting a unique mode of viral gene transcription. These studies provide new insight into how HSV-1 causes changes in the cellular program of gene expression and how the virus coopts host Pol II for its own use.


2018 ◽  
Vol 92 (10) ◽  
Author(s):  
Philipp E. Merkl ◽  
Megan H. Orzalli ◽  
David M. Knipe

ABSTRACTThe initial events after DNA virus infection involve a race between epigenetic silencing of the incoming viral DNA by host cell factors and expression of viral genes. Several host gene products, including the nuclear domain 10 (ND10) components PML (promyelocytic leukemia) and Daxx (death domain-associated protein 6), as well as IFI16 (interferon-inducible protein 16), have been shown to restrict herpes simplex virus 1 (HSV-1) replication. Whether IFI16 and ND10 components work together or separately to restrict HSV-1 replication is not known. To determine the combinatorial effects of IFI16 and ND10 proteins on viral infection, we depleted Daxx or PML in primary human foreskin fibroblasts (HFFs) in the presence or absence of IFI16. Daxx or IFI16 depletion resulted in higherICP0mutant viral yields, and the effects were additive. Surprisingly, small interfering RNA (siRNA) depletion of PML in the HFF cells led to decreased ICP0-null virus replication, while short hairpin RNA (shRNA) depletion led to increased ICP0-null virus replication, arguing that different PML isoforms or PML-related proteins may have restrictive or proviral functions. In normal human cells, viral DNA replication increases expression of all classes of HSV-1 genes. We observed that IFI16 repressed transcription from both parental and progeny DNA genomes. Taken together, our results show that the mechanisms of action of IFI16 and ND10 proteins are independent, at least in part, and that IFI16 exerts restrictive effects on both input and replicated viral genomes. These results raise the potential for distinct mechanisms of action of IFI16 on parental and progeny viral DNA molecules.IMPORTANCEMany human DNA viruses transcribe their genomes and replicate in the nucleus of a host cell, where they exploit the host cell nuclear machinery for their own replication. Host factors attempt to restrict viral replication by blocking such events, and viruses have evolved mechanisms to neutralize the host restriction factors. In this study, we provide information about the mechanisms of action of three host cell factors that restrict replication of herpes simplex virus (HSV). We found that these factors function independently and that one acts to restrict viral transcription from parental and progeny viral DNA genomes. These results provide new information about how cells counter DNA virus replication in the nucleus and provide possible approaches to enhance the ability of human cells to resist HSV infection.


2009 ◽  
Vol 83 (9) ◽  
pp. 4520-4527 ◽  
Author(s):  
Jun Arii ◽  
Masashi Uema ◽  
Tomomi Morimoto ◽  
Hiroshi Sagara ◽  
Hiroomi Akashi ◽  
...  

ABSTRACT Herpes simplex virus 1 (HSV-1) enters cells either via fusion of the virion envelope and host cell plasma membrane or via endocytosis, depending on the cell type. In the study reported here, we investigated a viral entry pathway dependent on the paired immunoglobulin-like type 2 receptor α (PILRα), a recently identified entry coreceptor for HSV-1 that associates with viral envelope glycoprotein B (gB). Experiments using inhibitors of endocytic pathways and ultrastructural analyses of Chinese hamster ovary (CHO) cells transduced with PILRα showed that HSV-1 entry into these cells was via virus-cell fusion at the cell surface. Together with earlier observations that HSV-1 uptake into normal CHO cells and those transduced with a receptor for HSV-1 envelope gD is mediated by endocytosis, these results indicated that expression of PILRα produced an alternative HSV-1 entry pathway in CHO cells. We also showed that human and murine PILRα were able to mediate entry of pseudorabies virus, a porcine alphaherpesvirus, but not of HSV-2. These results indicated that viral entry via PILRα appears to be conserved but that there is a PILRα preference among alphaherpesviruses.


2014 ◽  
Vol 89 (3) ◽  
pp. 1879-1888 ◽  
Author(s):  
Jun Arii ◽  
Yoshitaka Hirohata ◽  
Akihisa Kato ◽  
Yasushi Kawaguchi

ABSTRACTNonmuscle myosin heavy chain IIA (NMHC-IIA) has been reported to function as a herpes simplex virus 1 (HSV-1) entry coreceptor by interacting with viral envelope glycoprotein B (gB). Vertebrates have three genetically distinct isoforms of the NMHC-II, designated NMHC-IIA, NMHC-IIB, and NMHC-IIC. COS cells, which are readily infected by HSV-1, do not express NMHC-IIA but do express NMHC-IIB. This observation prompted us to investigate whether NMHC-IIB might associate with HSV-1 gB and be involved in an HSV-1 entry like NMHC-IIA. In these studies, we show that (i) NMHC-IIB coprecipitated with gB in COS-1 cells upon HSV-1 entry; (ii) a specific inhibitor of myosin light chain kinase inhibited cell surface expression of NMHC-IIB in COS-1 cells upon HSV-1 entry as well as HSV-1 infection, as reported with NMHC-IIA; (iii) overexpression of mouse NMHC-IIB in IC21 cells significantly increased their susceptibility to HSV-1 infection; and (iv) knockdown of NMHC-IIB in COS-1 cells inhibited HSV-1 infection as well as cell-cell fusion mediated by HSV-1 envelope glycoproteins. These results supported the hypothesis that, like NMHC-IIA, NMHC-IIB associated with HSV-1 gB and mediated HSV-1 entry.IMPORTANCEHerpes simplex virus 1 (HSV-1) was reported to utilize nonmuscle myosin heavy chain IIA (NMHC-IIA) as an entry coreceptor associating with gB. Vertebrates have three genetically distinct isoforms of NMHC-II. In these isoforms, NMHC-IIB is of special interest since it highly expresses in neuronal tissue, one of the most important cellular targets of HSV-1in vivo. In this study, we demonstrated that the ability to mediate HSV-1 entry appeared to be conserved in NMHC-II isoforms. These results may provide an insight into the mechanism by which HSV-1 infects a wide variety of cell typesin vivo.


Author(s):  
Z. Hong Zhou ◽  
Jing He ◽  
Joanita Jakana ◽  
J. D. Tatman ◽  
Frazer J. Rixon ◽  
...  

Herpes simplex virus-1 (HSV-1) is a ubiquitous virus which is implicated in diseases ranging from self-curing cold sores to life-threatening infections. The 2500 Å diameter herpes virion is composed of a glycoprotein spike containing, lipid envelope, enclosing a protein layer (the tegument) in which is embedded the capsid (which contains the dsDNA genome). The B-, and A- and C-capsids, representing different morphogenetic stages in HSV-1 infected cells, are composed of 7, and 5 structural proteins respectively. The three capsid types are organized in similar T=16 icosahedral shells with 12 pentons, 150 hexons, and 320 connecting triplexes. Our previous 3D structure study at 26 Å revealed domain features of all these structural components and suggested probable locations for the outer shell proteins, VP5, VP26, VP19c and VP23. VP5 makes up most of both pentons and hexons. VP26 appeared to bind to the VP5 subunit in hexon but not to that in penton.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David Shahnazaryan ◽  
Rana Khalil ◽  
Claire Wynne ◽  
Caroline A. Jefferies ◽  
Joan Ní Gabhann-Dromgoole ◽  
...  

AbstractHerpes simplex keratitis (HSK), caused by herpes simplex virus type 1 (HSV-1) infection, is the commonest cause of infectious blindness in the developed world. Following infection the virus is initially suspended in the tear film, where it encounters a multi-pronged immune response comprising enzymes, complement, immunoglobulins and crucially, a range of anti-viral and pro-inflammatory cytokines. However, given that HSV-1 can overcome innate immune responses to establish lifelong latency throughout a susceptible individual’s lifetime, there is significant interest in understanding the mechanisms employed by HSV-1 to downregulate the anti-viral type I interferon (IFN) mediated immune responses. This study aimed to investigate the interactions between infected cell protein (ICP)0 and key elements of the IFN pathway to identify possible novel targets that contribute to viral immune evasion. Reporter gene assays demonstrated the ability of ICP0 to inhibit type I IFN activity downstream of pathogen recognition receptors (PRRs) which are known to be involved in host antiviral defences. Further experiments identified interferon regulatory factor (IRF)7, a driver of type I IFN, as a potential target for ICP0. These findings increase our understanding of the pathogenesis of HSK and suggest IRF7 as a potential therapeutic target.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 196
Author(s):  
Sara Artusi ◽  
Emanuela Ruggiero ◽  
Matteo Nadai ◽  
Beatrice Tosoni ◽  
Rosalba Perrone ◽  
...  

The herpes simplex virus 1 (HSV-1) genome is extremely rich in guanine tracts that fold into G-quadruplexes (G4s), nucleic acid secondary structures implicated in key biological functions. Viral G4s were visualized in HSV-1 infected cells, with massive virus cycle-dependent G4-formation peaking during viral DNA replication. Small molecules that specifically interact with G4s have been shown to inhibit HSV-1 DNA replication. We here investigated the antiviral activity of TMPyP4, a porphyrin known to interact with G4s. The analogue TMPyP2, with lower G4 affinity, was used as control. We showed by biophysical analysis that TMPyP4 interacts with HSV-1 G4s, and inhibits polymerase progression in vitro; in infected cells, it displayed good antiviral activity which, however, was independent of inhibition of virus DNA replication or entry. At low TMPyP4 concentration, the virus released by the cells was almost null, while inside the cell virus amounts were at control levels. TEM analysis showed that virus particles were trapped inside cytoplasmatic vesicles, which could not be ascribed to autophagy, as proven by RT-qPCR, western blot, and immunofluorescence analysis. Our data indicate a unique mechanism of action of TMPyP4 against HSV-1, and suggest the unprecedented involvement of currently unknown G4s in viral or antiviral cellular defense pathways.


Sign in / Sign up

Export Citation Format

Share Document