homotypic interaction
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 5)

H-INDEX

16
(FIVE YEARS 1)

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Muziying Liu ◽  
Kang Zhou ◽  
Zhihao Xu ◽  
Huan Ma ◽  
Xiaocong Cao ◽  
...  

Abstract Murine caspase-11 is the centerpiece of the non-canonical inflammasome pathway that can respond to intracellular LPS and induce pyroptosis. Caspase-11 contains two components, an N-terminal caspase recruitment domain (CARD) and a C-terminal catalytic domain. The aggregation of caspase-11 is thought to promote the auto-processing and activation of caspase-11. However, the activation mechanism of caspase-11 remains unclear. In this study, we purified the caspase-11 CARD fused to an MBP tag and found it tetramerizes in solution. Crystallographic analysis reveals an extensive hydrophobic interface formed by the H1–2 helix mediating homotypic CARD interactions. Importantly, mutations of the helix H1–2 hydrophobic residues abolished the tetramerization of MBP-tagged CARD in solution and failed to induce pyroptosis in cells. Our study provides the first evidence of the homotypic interaction mode for an inflammatory caspase by crystal model. This finding demonstrates that the tetramerization of the N-terminal CARD can promote releasing of the catalytic domain auto-inhibition, leading to the caspase-11 activation.


2020 ◽  
Vol 28 (1) ◽  
pp. 251-266 ◽  
Author(s):  
Hong Hu ◽  
Xialian Wu ◽  
Guoxiang Wu ◽  
Ning Nan ◽  
Jing Zhang ◽  
...  

AbstractNecroptosis is mediated by signaling complexes called necrosomes, which contain receptor-interacting protein 3 (RIP3) and upstream effectors, such as RIP1. In necrosomes, the RIP homotypic interaction motif (RHIM) of RIP3 and RIP1 forms amyloidal complex. But how the amyloidal necrosomes control RIP3 activation and cell necroptosis has not been determined. Here, we showed that RIP3 amyloid fibrils could further assemble into large fibrillar networks which presents as cellular puncta during necroptosis. A viral RHIM-containing necroptosis inhibitor M45 could form heteroamyloid with RIP3 in cells and prevent RIP3 puncta formation and cell necroptosis. We characterized mutual antagonism between RIP3–RHIM and M45–RHIM in necroptosis regulation, which was caused by distinct inter-filament interactions in RIP3, M45 amyloids revealed with atomic force microscopy. Moreover, double mutations Asn464 and Met468 in RIP3–RHIM to Asp disrupted RIP3 kinase-dependent necroptosis. While the mutant RIP3(N464D/M468D) could form amyloid as wild type upon necroptosis induction. Based on these results, we propose that RIP3 amyloid formation is required but not sufficient in necroptosis signaling, the ordered inter-filament assembly of RIP3 is critical in RIP3 amyloid mediated kinase activation and cell necroptosis.


Cell Reports ◽  
2020 ◽  
Vol 31 (7) ◽  
pp. 107650
Author(s):  
Haiwei Zhang ◽  
Xiaoxia Wu ◽  
Xiaoming Li ◽  
Ming Li ◽  
Fang Li ◽  
...  

2020 ◽  
Author(s):  
Megan Steain ◽  
Max O.D.G. Baker ◽  
Chi L.L. Pham ◽  
Yann Gambin ◽  
Emma Sierecki ◽  
...  

AbstractHerpesviruses are known to encode a number of inhibitors of host cell death, including Rip Homotypic Interaction Motif (RHIM)-containing proteins. Varicella zoster virus (VZV) is a member of the alphaherpesvirus subfamily and is responsible for causing chickenpox and shingles. We have identified a novel viral RHIM in the VZV capsid triplex protein open reading frame (ORF) 20 that acts as a host cell death inhibitor. Like the human cellular RHIMs in RIPK1 and RIPK3 that stabilise the necrosome in TNF-induced necroptosis, and the viral RHIM in M45 from murine cytomegalovirus that inhibits cell death, the ORF20 RHIM is capable of forming fibrillar functional amyloid complexes. Notably, the ORF20 RHIM forms hybrid amyloid complexes with human ZBP1, a cytoplasmic sensor of viral nucleic acid. Although VZV can inhibit TNF-induced necroptosis, the ORF20 RHIM does not appear to be responsible for this inhibition. In contrast, the ZBP1 pathway is identified as important for VZV infection. Mutation of the ORF20 RHIM renders the virus incapable of efficient spread in ZBP1-expressing HT-29 cells, an effect which can be reversed by the inhibition of caspases. Therefore we conclude that the VZV ORF20 RHIM is important for preventing ZBP1-driven apoptosis during VZV infection, and propose that it mediates this effect by sequestering ZBP1 into decoy amyloid assemblies.Author SummaryRip homotypic interaction motifs (RHIMs) are found in host proteins that can signal for programmed cell death and in viral proteins that can prevent it. Complexes stabilized by intermolecular interactions involving RHIMs have a fibrillar amyloid structure. We have identified a novel RHIM within the ORF20 protein expressed by Varicella zoster virus (VZV) that forms amyloid-based complexes with human cellular RHIMs. Whereas other herpesvirus RHIMs inhibit TNF-driven necroptosis, this new VZV RHIM targets the host RHIM-containing protein ZBP1 to inhibit apoptosis during infection. This is the first study to demonstrate the importance of the ZBP1 pathway in VZV infection and to identify the role of a viral RHIM in apoptosis inhibition. It broadens our understanding of host defense pathways and demonstrates how a decoy amyloid strategy is employed by pathogens to circumvent the host response.


2018 ◽  
Author(s):  
Chi L. L. Pham ◽  
Merryn Strange ◽  
Ailis O’ Carroll ◽  
Nirukshan Shanmugam ◽  
Emma Sierecki ◽  
...  

AbstractThe M45 protein from murine cytomegalovirus protects infected murine cells from death by necroptosis and can protect human cells from necroptosis induced by TNFR activation, when heterologously expressed. We show that the N-terminal 90 residues of the M45 protein, which contain a RIP Homotypic Interaction Motif (RHIM), are sufficient to confer protection against TNFR-induced necroptosis. This N-terminal region of M45 drives rapid self-assembly into homo-oligomeric amyloid fibrils and interacts with the RHIMs of human RIPK1 and RIPK3 kinases to form heteromeric amyloid fibrils in vitro. An intact RHIM core tetrad is required for the inhibition of cell death by M45 and we show that mutation of those key tetrad residues abolishes homo- and hetero-amyloid assembly by M45 in vitro, suggesting that the amyloidogenic nature of the M45 RHIM underlies its biological activity. Our results indicate that M45 mimics the interactions made by RIPK1 with RIPK3 in forming heteromeric amyloid structures.


PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0190547 ◽  
Author(s):  
Tengchuan Jin ◽  
Mo Huang ◽  
Jiansheng Jiang ◽  
Patrick Smith ◽  
Tsan Sam Xiao

2016 ◽  
Vol 36 (12) ◽  
pp. 6611-6618 ◽  
Author(s):  
MYUNG WOUL HAN ◽  
JONG CHEOL LEE ◽  
SEUNG-YOON PARK ◽  
YOUNG MIN KIM ◽  
KYUNG-JA CHO ◽  
...  

2015 ◽  
Vol 89 (14) ◽  
pp. 7159-7169 ◽  
Author(s):  
Qing Fan ◽  
Richard Longnecker ◽  
Sarah A. Connolly

ABSTRACTWhereas most viruses require only a single protein to bind to and fuse with cells, herpesviruses use multiple glycoproteins to mediate virus entry, and thus communication among these proteins is required. For most alphaherpesviruses, the minimal set of viral proteins required for fusion with the host cell includes glycoproteins gD, gB, and a gH/gL heterodimer. In the current model of entry, gD binds to a cellular receptor and transmits a signal to gH/gL. This signal then triggers gB, the conserved fusion protein, to insert into the target membrane and refold to merge the viral and cellular membranes. We previously demonstrated that gB homologs from two alphaherpesviruses, herpes simplex virus 1 (HSV-1) and saimiriine herpesvirus 1 (SaHV-1), were interchangeable. In contrast, neither gD nor gH/gL functioned with heterotypic entry glycoproteins, indicating that gD and gH/gL exhibit an essential type-specific functional interaction. To map this homotypic interaction site on gH/gL, we generated HSV-1/SaHV-1 gH and gL chimeras. The functional interaction with HSV-1 gD mapped to the N-terminal domains I and II of the HSV-1 gH ectodomain. The core of HSV-1 gL that interacts with gH also was required for functional homotypic interaction. The N-terminal gH/gL domains I and II are the least conserved and may have evolved to support species-specific glycoprotein interactions.IMPORTANCEThe first step of the herpesvirus life cycle is entry into a host cell. A coordinated interaction among multiple viral glycoproteins is required to mediate fusion of the viral envelope with the cell membrane. The details of how these glycoproteins interact to trigger fusion are unclear. By swapping the entry glycoproteins of two alphaherpesviruses (HSV-1 and SaHV-1), we previously demonstrated a functional homotypic interaction between gD and gH/gL. To define the gH and gL requirements for homotypic interaction, we evaluated the function of a panel of HSV-1/SaHV-1 gH and gL chimeras. We demonstrate that domains I and II of HSV-1 gH are sufficient to promote a functional, albeit reduced, interaction with HSV-1 gD. These findings contribute to our model of how the entry glycoproteins cooperate to mediate herpesvirus entry into the cell.


Sign in / Sign up

Export Citation Format

Share Document