scholarly journals Two Overlapping Domains of a Lyssavirus Matrix Protein That Acts on Different Cell Death Pathways

2010 ◽  
Vol 84 (19) ◽  
pp. 9897-9906 ◽  
Author(s):  
Florence Larrous ◽  
Alireza Gholami ◽  
Shahul Mouhamad ◽  
Jérôme Estaquier ◽  
Hervé Bourhy

ABSTRACT The lyssavirus matrix (M) protein induces apoptosis. The regions of the M protein that are essential for triggering cell death pathways are not yet clearly defined. We therefore compared the M proteins from two viruses that have contrasting characteristics in terms of cellular apoptosis: a genotype 3 lyssavirus, Mokola virus (MOK), and a genotype 1 rabies virus isolated from a dog from Thailand (THA). We identified a 20-amino-acid fragment (corresponding to positions 67 to 86) that retained the cell death activities of the full-length M protein from MOK via both the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and inhibition of cytochrome c oxidase (CcO) activity. We found that the amino acids at positions 77 and 81 have an essential role in triggering these two cell death pathways. Directed mutagenesis demonstrated that the amino acid at position 77 affects CcO activity, whereas the amino acid at position 81 affects TRAIL-dependent apoptosis. Mutations in the full-length M protein that compromised induction of either of these two pathways resulted in delayed apoptosis compared with the time to apoptosis for the nonmutated control.

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 613
Author(s):  
Jing Zhang ◽  
Yongxiang Wang ◽  
Shuwen Fu ◽  
Quan Yuan ◽  
Qianru Wang ◽  
...  

Hepatitis B virus (HBV) expresses co-terminal large (L), middle (M), and small (S) envelope proteins. S protein drives virion and subviral particle secretion, whereas L protein inhibits subviral particle secretion but coordinates virion morphogenesis. We previously found that preventing S protein expression from a subgenomic construct eliminated M protein. The present study further examined impact of S protein on L and M proteins. Mutations were introduced to subgenomic construct of genotype A or 1.1mer replication construct of genotype A or D, and viral proteins were analyzed from transfected Huh7 cells. Mutating S gene ATG to prevent expression of full-length S protein eliminated M protein, reduced intracellular level of L protein despite its blocked secretion, and generated a truncated S protein through translation initiation from a downstream ATG. Truncated S protein was secretion deficient and could inhibit secretion of L, M, S proteins from wild-type constructs. Providing full-length S protein in trans rescued L protein secretion and increased its intracellular level from mutants of lost S gene ATG. Lost core protein expression reduced all the three envelope proteins. In conclusion, full-length S protein could sustain intracellular and extracellular L and M proteins, while truncated S protein could block subviral particle secretion.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2673-2673
Author(s):  
Pasquale Cascino ◽  
Alice Nevone ◽  
Claudia Scopelliti ◽  
Maria Girelli ◽  
Giulia Mazzini ◽  
...  

Abstract Introduction In patients affected by monoclonal gammopathies, tumoral B cells or plasma cells secrete a monoclonal antibody (termed M protein), which can be used to track the presence of the tumor itself. Moreover, the M protein can directly cause potentially life-threatening organ damage, which is dictated by the specific, patient's unique clonal light and/or heavy chain, as in patients affected by immunoglobulin light chain (AL) amyloidosis. Yet, the current paradigm in the diagnosis and management of these conditions treats the M protein as a simple tumor biomarker to be identified/quantified. Patients' specific M protein sequences remain mostly undefined and molecular mechanisms underlying M-protein related clinical manifestations are largely obscure. Methods By combining the unbiased amplification of expressed immunoglobulin genes with long-read, single molecule real-time DNA sequencing and bioinformatics analyses, we have established a method to identify the full-length sequence of the variable region of expressed immunoglobulin genes and to rank the obtained sequences based on their relative abundance, thus enabling the identification of the full-length variable sequence of M protein genes from a high number of patients analysed in parallel. Results The assay, which we termed Single Molecule Real-Time Sequencing of the M protein (SMaRT M-Seq), has undergone an extensive technical validation. Sequencing of contrived bone marrow samples generated through serial dilutions of plasma cell lines into control bone marrow, as well as sequencing of bona fide bone marrow samples from AL patients and comparison with gold-standard techniques of immunoglobulin gene sequencing showed: 100% sequence-accuracy at the individual base-pair level; High repeatability (CV<0.8% for sequencing of pentaplicates) in defining the molecular clonal size (i.e. the fraction of total immunoglobulin sequences coinciding with the clonal sequence); A high sensitivity in identifying clonal immunoglobulin sequences (10 -3 when employing low-coverage sequencing on multiple, pooled samples). Noteworthy, SMaRT M Seq was applied to a cohort of 86 consecutive patients with AL amyloidosis (17 κ and 69 λ; median BMPC infiltration 9%, IQR 6-13%; median dFLC 176 mg/L, IQR 75-370 mg/L), including cases with small clonal burden and M protein which was undetectable with conventional M protein studies. A full-length sequence of the variable region of the clonal light chain was obtained in all patients (median molecular clonal size of 88.3%, IQR: 70.7 - 93%). The most common κ germline genes were IGKV1-33 and IGKV4-01 (24% each of the 17 κ AL patients), and the most common λ germline genes were IGLV6-57 (26% of the 69 λ AL patients), IGLV2-14 (17%), IGLV3-01 (17%) and IGLV1-44 (10%). The most frequent λ and κ germline genes together (IGLV6-57, IGLV2-14, IGLV3-01, IGLV1-44, IGKV1-33 and IGKV4-01) accounted for 66% of all the clones. Germline gene usage correlated with selected clinical features. Sequence information was then exploited to improve mass spectrometry-based amyloid typing on fat pad aspirates and to enable the sensitive detection of clonotypic sequences using short-read DNA sequencing of the involved light chain isotype (up to 10 -7 dilution). Conclusions We have established SMaRT M-Seq as a novel valuable assay to reliably identify the full-length variable sequence of M proteins. SMaRT M-Seq has undergone extensive technical validation, showing high accuracy, repeatability and sensitivity. The latter is determined by the number of reads analyzed per sample. This is in turn dictated by the sequencing output of the employed sequencing platform, and by the number of pooled samples analyzed in a given sequencing round, thus proving to be scalable. Even when analyzing multiple samples on a sequencing platform with low sequencing output, the achieved sensitivity of SMaRT M-Seq significantly exceeds the requirements for the identification of clonal B cells/plasma cells in patients with AL amyloidosis. Sequencing disease-associated M proteins from large cohorts of patients has the potential to uncover molecular mechanisms of M protein-related clinical manifestations which have remained largely unexplored so far, and could enable approaches of personalized medicine for the sensitive detection of patients' specific M proteins at diagnosis and after anti-clonal therapy. Disclosures Milani: Celgene: Other: Travel support; Janssen-Cilag: Honoraria. Fazio: Janseen: Honoraria. Petrucci: GSK: Honoraria, Other: Advisory Board; Amgen: Honoraria, Other: Advisory Board; Takeda: Honoraria, Other: Advisory Board; BMS: Honoraria, Other: Advisory Board; Janssen-Cilag: Honoraria, Other: Advisory Board; Celgene: Honoraria, Other: Advisory Board; Karyopharm: Honoraria, Other: Advisory Board. Palladini: Pfizer: Honoraria; Siemens: Honoraria; Janssen Global Services: Honoraria, Other: advisory board fees. Nuvolone: Janssen-Cilag: Honoraria; Oncopeptides, Inc.: Research Funding.


2021 ◽  
Vol 102 (4) ◽  
Author(s):  
Isshu Kojima ◽  
Fumiki Izumi ◽  
Makoto Ozawa ◽  
Yoshikazu Fujimoto ◽  
Misuzu Okajima ◽  
...  

We previously reported that the avirulent fixed rabies virus strain Ni-CE induces a clear cytopathic effect in mouse neuroblastoma cells, whereas its virulent progenitor, the Nishigahara strain, does not. Infection with Nishigahara and Ni-CE mutants containing a single amino acid substitution in the matrix protein (M) demonstrated that the amino acid at position 95 of M (M95) is a cytopathic determinant. The characteristics of cell death induced by Ni-CE infection resemble those of apoptosis (rounded and shrunken cells, DNA fragmentation), but the intracellular signalling pathway for this process has not been fully investigated. In this study, we aimed to elucidate the mechanism by which M95 affects cell death induced by human neuroblastoma cell infection with the Nishigahara, Ni-CE and M95-mutated strains. We demonstrated that the Ni-CE strain induced DNA fragmentation, cell membrane disruption, exposure of phosphatidylserine (PS), activation of caspase-3/7 and anti-poly (ADP-ribose) polymerase 1 (PARP-1) cleavage, an early apoptosis indicator, whereas the Nishigahara strain did not induce DNA fragmentation, caspase-3/7 activation, cell membrane disruption, or PARP-1 cleavage, but did induce PS exposure. We also demonstrated that these characteristics were associated with M95 using M95-mutated strains. However, we found that Ni-CE induced cell death despite the presence of a caspase inhibitor, Z-VAD-FMK. In conclusion, our data suggest that M95 mutation-related cell death is caused by both the caspase-dependent and -independent pathways.


1976 ◽  
Vol 22 (8) ◽  
pp. 1072-1082
Author(s):  
David C. Straus ◽  
Charles F. Lange

Ten different group A streptococcal M-protein preparations purified by trichloroacetic acid precipitation and three M-protein preparations purified by cellulose chromatography were examined by SDS and polyacrylamide gel electrophoresis, and analyzed for amino acid composition and N-terminal amino acids. Fingerprinting (both tryptic and chymotryptic) was performed on the cellulose-purified preparations of M1, M12, and M29 proteins which showed these proteins to be structurally related. Trypsin produced maps with 37 to 42 peptides, whereas chymotrypsin digestion resulted in 8 to 12 peptides, depending on the M-type. Sequencing was performed on the M12 protein and tentative identification of nine N-terminal amino acids was made. Molecular weights of the cellulose and TCA-purified M-proteins were determined by SDS gel electrophoresis and chromatography on G-200 Sephadex, with comparable results, indicating molecular size of at least 23 000. The amino acid analyses of the 10 TCA-purified proteins followed the patterns established for M-proteins, with high concentrations of lysine, aspartic acid, glutamic acid, alanine, and leucine. All 10 proteins had L-alanine as their N-terminal amino acid. Evidence for a one way cross-reaction between type 1 and type 29 streptococci was also found.


2020 ◽  
pp. jbc.RA120.014190
Author(s):  
Xing Liu ◽  
Fang Li ◽  
Jiwen Zhang ◽  
Lulu Wang ◽  
Jinliang Wang ◽  
...  

Rabies virus (RABV) matrix protein (M) plays crucial roles in viral transcription, replication, assembly, and budding; however, its function during the early stage of virus replication remains unknown. Here, we mapped the protein interactome between RABV M and human host factors using a proteomic approach, finding a link to the V-type proton ATPase (V-ATPase) catalytic subunit A (ATP6V1A) which is located in the endosomes where RABV first enters. By downregulating or upregulating ATP6V1A expression in HEK293T cells, we found that ATP6V1A facilitated RABV replication. We further found that ATP6V1A was involved in the dissociation of incoming viral M proteins during viral uncoating. Co-immunoprecipitation demonstrated that M interacted with the full length or middle domain of ATP6V1A, which was dependent on the lysine residue at position 256 and the glutamic acid residue at position 279. RABV growth and uncoating in ATP6V1A-depleted cells was restored by trans-complementation with the full length or interaction domain of ATP6V1A. Moreover, stably overexpressed ATP6V1A enhanced RABV growth in Vero cells which are used for the production of rabies vaccine. Our findings identify a new partner for RABV M proteins and establish a new role of ATP6V1A by promoting virion uncoating during RABV replication.


1999 ◽  
Vol 37 (10) ◽  
pp. 3291-3295 ◽  
Author(s):  
Nami Konomi ◽  
Chiaki Miyoshi ◽  
Carlos La Fuente Zerain ◽  
Tian-Cheng Li ◽  
Yasuyuki Arakawa ◽  
...  

Prevalence of hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis G virus (HGV), and hepatitis E virus (HEV) was investigated among 574 healthy blood donors in Bolivia. HCV RNA and HGV RNA in the serum were identified by a nested reverse transcription-PCR using primers derived from the 5′ untranslated region (5′ UTR). We also tested for hepatitis B surface antigen (HBsAg) and for the antibody to HEV. The results revealed that HGV RNA was present in 84 of 574 (14.6%) tested blood donors, whereas HBsAg was detected in only 2 (0.3%) donors, and no individuals positive for HCV RNA were found. Anti-HEV immunoglobulin G (IgG) was detected in 93 (16.2%) individuals and anti-HEV IgM was found in 10 (1.7%) individuals among the same population. Phylogenetic analysis of 44 HGV isolates in the 5′ UTR showed that 27 (61%) isolates were genotype 3 (Asian type) and the remaining 17 (39%) isolates were genotype 2 (United States and European type). Moreover, we obtained a full-length nucleotide sequence of the HGV genome (designated HGV-BL230) recovered from a Bolivian blood donor. The BL230 was composed of 9,227 nucleotides and had a single open reading frame, encoding 2,842 amino acid residues. Interestingly, the BL230 belonged to genotype 2 of HGV at the level of a full-length sequence, although this was classified as genotype 3 by a phylogenetic analysis based on the 5′ UTR sequence. The BL230 differed from previously reported HGV/hepatitis GB virus type C isolates by 12 to 13% of the nucleotide sequence and 4% of the amino acid sequence. Our data indicate a high prevalence of HGV in native Bolivians, and the major genotype of HGV was type 3.


2000 ◽  
Vol 74 (16) ◽  
pp. 7619-7627 ◽  
Author(s):  
Pinwen P. Chiou ◽  
Carol H. Kim ◽  
Patricia Ormonde ◽  
Jo-Ann C. Leong

ABSTRACT Infectious hematopoietic necrosis virus (IHNV) infection in tissue culture cells has previously been shown to result in the shutdown of host protein synthesis, cell rounding, and cell death. We report here an investigation of the cytopathogenicity of the viral phosphoprotein (P or M1), matrix (M or M2), and nonvirion (NV) proteins in cultured fish cells. The expression of M alone potently inhibited reporter gene expression from a viral and an interferon (IFN)-inducible promoter, whereas P and NV did not produce a similar effect. Northern blot analysis further revealed a reduction in the steady-state level of reporter mRNA when the M gene was cotransfected into cells; conversely, M mRNA was not drastically reduced in the same cells. By immunofluorescence confocal microscopy, fragmented nuclei were found in some cells expressing M protein but not in cells expressing P, NV, or β-galactosidase protein. Electron microscopy revealed the morphological changes associated with apoptosis in the M-transfected cells. Furthermore, IHNV infection was shown to produce DNA “laddering” in cultured cells. Taken together, these data suggested at least two functions for M protein in an IHNV infection: down regulation of host transcription and the induction of programmed cell death. In the course of these experiments, we also discovered that NV expression was associated with cell rounding, the first biological effect on cells to be attributed to the NV gene.


2020 ◽  
Vol 48 (3) ◽  
pp. 137-152
Author(s):  
Marko Manevski ◽  
Dinesh Devadoss ◽  
Ruben Castro ◽  
Lauren Delatorre ◽  
Adriana Yndart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document