scholarly journals The F Gene of the Osaka-2 Strain of Measles Virus Derived from a Case of Subacute Sclerosing Panencephalitis Is a Major Determinant of Neurovirulence

2010 ◽  
Vol 84 (21) ◽  
pp. 11189-11199 ◽  
Author(s):  
Minoru Ayata ◽  
Kaoru Takeuchi ◽  
Makoto Takeda ◽  
Shinji Ohgimoto ◽  
Seiichi Kato ◽  
...  

ABSTRACT Measles virus (MV) is the causative agent for acute measles and subacute sclerosing panencephalitis (SSPE). Although numerous mutations have been found in the MV genome of SSPE strains, the mutations responsible for the neurovirulence have not been determined. We previously reported that the SSPE Osaka-2 strain but not the wild-type strains of MV induced acute encephalopathy when they were inoculated intracerebrally into 3-week-old hamsters. The recombinant MV system was adapted for the current study to identify the gene(s) responsible for neurovirulence in our hamster model. Recombinant viruses that contained envelope-associated genes from the Osaka-2 strain were generated on the IC323 wild-type MV background. The recombinant virus containing the M gene alone did not induce neurological disease, whereas the H gene partially contributed to neurovirulence. In sharp contrast, the recombinant virus containing the F gene alone induced lethal encephalopathy. This phenotype was related to the ability of the F protein to induce syncytium formation in Vero cells. Further study indicated that a single T461I substitution in the F protein was sufficient to transform the nonneuropathogenic wild-type MV into a lethal virus for hamsters.

2018 ◽  
Vol 92 (6) ◽  
Author(s):  
Yuma Sato ◽  
Shumpei Watanabe ◽  
Yoshinari Fukuda ◽  
Takao Hashiguchi ◽  
Yusuke Yanagi ◽  
...  

ABSTRACTMeasles virus (MV) usually causes acute infection but in rare cases persists in the brain, resulting in subacute sclerosing panencephalitis (SSPE). Since human neurons, an important target affected in the disease, do not express the known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), how MV infects neurons and spreads between them is unknown. Recent studies have shown that many virus strains isolated from SSPE patients possess substitutions in the extracellular domain of the fusion (F) protein which confer enhanced fusion activity. Hyperfusogenic viruses with such mutations, unlike the wild-type MV, can induce cell-cell fusion even in SLAM- and nectin 4-negative cells and spread efficiently in human primary neurons and the brains of animal models. We show here that a hyperfusogenic mutant MV, IC323-F(T461I)-EGFP (IC323 with a fusion-enhancing T461I substitution in the F protein and expressing enhanced green fluorescent protein), but not the wild-type MV, spreads in differentiated NT2 cells, a widely used human neuron model. Confocal time-lapse imaging revealed the cell-to-cell spread of IC323-F(T461I)-EGFP between NT2 neurons without syncytium formation. The production of virus particles was strongly suppressed in NT2 neurons, also supporting cell-to-cell viral transmission. The spread of IC323-F(T461I)-EGFP was inhibited by a fusion inhibitor peptide as well as by some but not all of the anti-hemagglutinin antibodies which neutralize SLAM- or nectin-4-dependent MV infection, suggesting the presence of a distinct neuronal receptor. Our results indicate that MV spreads in a cell-to-cell manner between human neurons without causing syncytium formation and that the spread is dependent on the hyperfusogenic F protein, the hemagglutinin, and the putative neuronal receptor for MV.IMPORTANCEMeasles virus (MV), in rare cases, persists in the human central nervous system (CNS) and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection. This neurological complication is almost always fatal, and there is currently no effective treatment for it. Mechanisms by which MV invades the CNS and causes the disease remain to be elucidated. We have previously shown that fusion-enhancing substitutions in the fusion protein of MVs isolated from SSPE patients contribute to MV spread in neurons. In this study, we demonstrate that MV bearing the hyperfusogenic mutant fusion protein spreads between human neurons in a cell-to-cell manner. Spread of the virus was inhibited by a fusion inhibitor peptide and antibodies against the MV hemagglutinin, indicating that both the hemagglutinin and hyperfusogenic fusion protein play important roles in MV spread between human neurons. The findings help us better understand the disease process of SSPE.


2015 ◽  
Vol 89 (6) ◽  
pp. 3318-3331 ◽  
Author(s):  
Matthias Lingemann ◽  
Sonja Surman ◽  
Emérito Amaro-Carambot ◽  
Anne Schaap-Nutt ◽  
Peter L. Collins ◽  
...  

ABSTRACTHuman parainfluenza virus type 3 (HPIV3), a paramyxovirus, is a major viral cause of severe lower respiratory tract disease in infants and children. The gene-end (GE) transcription signal of the HPIV3 matrix (M) protein gene is identical to those of the nucleoprotein and phosphoprotein genes except that it contains an apparent 8-nucleotide insert. This was associated with an increased synthesis of a readthrough transcript of the M gene and the downstream fusion (F) protein gene. We hypothesized that this insert may function to downregulate the expression of F protein by interfering with termination/reinitiation at the M-F gene junction, thus promoting the production of M-F readthrough mRNA at the expense of monocistronic F mRNA. To test this hypothesis, two similar recombinant HPIV3 viruses from which this insert in the M-GE signal was removed were generated. The M-GE mutants exhibited a reduction in M-F readthrough mRNA and an increase in monocistronic F mRNA. This resulted in a substantial increase in F protein synthesis in infected cells as well as enhanced incorporation of F protein into virions. The efficiency of mutant virus replication was similar to that of wild-type (wt) HPIV3 bothin vitroandin vivo. However, the F-protein-specific serum antibody response in hamsters was increased for the mutants compared to wt HPIV3. This study identifies a previously undescribed viral mechanism for attenuating the host adaptive immune response. Repairing the M-GE signal should provide a means to increase the antibody response to a live attenuated HPIV3 vaccine without affecting viral replication and attenuation.IMPORTANCEThe HPIV3 M-GE signal was previously shown to contain an apparent 8-nucleotide insert that was associated with increased synthesis of a readthrough mRNA of the M gene and the downstream F gene. However, whether this had any significant effect on the synthesis of monocistronic F mRNA or F protein, virus replication, virion morphogenesis, and immunogenicity was unknown. Here, we show that the removal of this insert shifts F gene transcription from readthrough M-F mRNA to monocistronic F mRNA. This resulted in a substantial increase in the amount of F protein expressed in the cell and packaged in the virus particle. This did not affect virus replication but increased the F-specific antibody response in hamsters. Thus, in wild-type HPIV3, the aberrant M-GE signal operates a previously undescribed mechanism that reduces the expression of a major neutralization and protective antigen, resulting in reduced immunogenicity. This has implications for the design of live attenuated HPIV3 vaccines; specifically, the antibody response against F can be elevated by “repairing” the M-GE signal to achieve higher-level F antigen expression, with no effect on attenuation.


2019 ◽  
Vol 94 (2) ◽  
Author(s):  
Yuta Shirogane ◽  
Takao Hashiguchi ◽  
Yusuke Yanagi

ABSTRACT Measles virus (MeV) is an enveloped RNA virus bearing two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. Upon receptor binding, the H protein triggers conformational changes of the F protein, causing membrane fusion and subsequent virus entry. MeV may persist in the brain, infecting neurons and causing fatal subacute sclerosing panencephalitis (SSPE). Since neurons do not express either of the MeV receptors, signaling lymphocytic activation molecule (SLAM; also called CD150) and nectin-4, how MeV propagates in neurons is unknown. Recent studies have shown that specific substitutions in the F protein found in MeV isolates from SSPE patients are critical for MeV neuropathogenicity by rendering the protein unstable and hyperfusogenic. Recombinant MeVs possessing the F proteins with such substitutions can spread in primary human neurons and in the brains of mice and hamsters and induce cell-cell fusion in cells lacking SLAM and nectin-4. Here, we show that receptor-blind mutant H proteins that have decreased binding affinities to receptors can support membrane fusion mediated by hyperfusogenic mutant F proteins, but not the wild-type F protein, in cells expressing the corresponding receptors. The results suggest that weak interactions of the H protein with certain molecules (putative neuron receptors) trigger hyperfusogenic F proteins in SSPE patients. Notably, where cell-cell contacts are ensured, the weak cis interaction of the H protein with SLAM on the same cell surface also could trigger hyperfusogenic F proteins. Some enveloped viruses may exploit such cis interactions with receptors to infect target cells, especially in cell-to-cell transmission. IMPORTANCE Measles virus (MeV) may persist in the brain, causing incurable subacute sclerosing panencephalitis (SSPE). Because neurons, the main target in SSPE, do not express receptors for wild-type (WT) MeV, how MeV propagates in the brain is a key question for the disease. Recent studies have demonstrated that specific substitutions in the MeV fusion (F) protein are critical for neuropathogenicity. Here, we show that weak cis and trans interactions of the MeV attachment protein with receptors that are not sufficient to trigger the WT MeV F protein can trigger the mutant F proteins from neuropathogenic MeV isolates. Our study not only provides an important clue to understand MeV neuropathogenicity but also reveals a novel viral strategy to expand cell tropism.


2009 ◽  
Vol 83 (17) ◽  
pp. 8713-8721 ◽  
Author(s):  
Hiromi Okada ◽  
Masae Itoh ◽  
Kyosuke Nagata ◽  
Kaoru Takeuchi

ABSTRACT Wild-type measles virus (MV) isolated in B95a cells could be adapted to Vero cells after several blind passages. In this study, we have determined the complete nucleotide sequences of the genomes of the wild type (T11wild) and its Vero cell-adapted (T11Ve-23) MV strain and identified amino acid substitutions R516G, E271K, D439E and G464W (D439E/G464W), N481Y/H495R, and Y187H/L204F in the nucleocapsid, V, fusion (F), hemagglutinin (H), and large proteins, respectively. Expression of mutated H and F proteins from cDNA revealed that the H495R substitution, in addition to N481Y, in the H protein was necessary for the wild-type H protein to use CD46 efficiently as a receptor and that the G464W substitution in the F protein was important for enhanced cell-cell fusion. Recombinant wild-type MV strains harboring the F protein with the mutations D439E/G464W [F(D439E/G464W)] and/or H(N481Y/H495R) protein revealed that both mutated F and H proteins were required for efficient syncytium formation and virus growth in Vero cells. Interestingly, a recombinant wild-type MV strain harboring the H(N481Y/H495R) protein penetrated slowly into Vero cells, while a recombinant wild-type MV strain harboring both the F(D439E/G464W) and H(N481Y/H495R) proteins penetrated efficiently into Vero cells, indicating that the F(D439E/G464W) protein compensates for the inefficient penetration of a wild-type MV strain harboring the H(N481Y/H495R) protein. Thus, the F and H proteins synergistically function to ensure efficient wild-type MV growth in Vero cells.


2001 ◽  
Vol 82 (9) ◽  
pp. 2143-2150 ◽  
Author(s):  
Tetsuo Nakayama ◽  
Katsuhiro Komase ◽  
Rina Uzuka ◽  
Akiyoshi Hoshi ◽  
Takao Okafuji

The live measles virus (MV) vaccine strain AIK-C was attenuated from the wild-type strain Edmonston by plaque purification at 33 °C. Strain AIK-C grew well at 33 °C with a mixture of small-and medium-sized plaques in Vero cells, but did not grow well at 40 °C. To investigate fusion inducibility, expression plasmids for the fusion (F) and haemagglutinin (H) protein regions of MV strains AIK-C (pAIK-F01 and pAIK-H) and Edmonston (pEdm-F and pEdm-H) were constructed. pEdm-F induced extensive cell fusion in B95a and Vero cells under the control of T7 RNA polymerase, whereas a sharp reduction in syncytium formation was observed when pAIK-F01 was used. Six amino acid differences were determined between pAIK-F01 and pEdm-F. Direct sequencing showed that the seed strain AIK-C contained either Leu or Phe at position 278 of the F protein. Experiments using recombinant F protein plasmids demonstrated that those with Leu at position 278 induced poor syncytium formation, while those with Phe at position 278 (Edmonston type) induced extensive cell fusion. Replacement of Phe with Leu at position 278 of pEdm-F reduced fusion-inducing capability. A full-length infectious clone of AIK-C with Leu at position 278 of the F protein was constructed. The rescued virus produced small plaques in Vero cells. However, the same rescued virus with Phe at position 278 produced large plaques. It was concluded that Leu at position 278 of the F protein of the MV vaccine strain AIK-C is responsible for the formation of small plaques.


2004 ◽  
Vol 85 (10) ◽  
pp. 3001-3006 ◽  
Author(s):  
Naoko Miyajima ◽  
Makoto Takeda ◽  
Masato Tashiro ◽  
Koji Hashimoto ◽  
Yusuke Yanagi ◽  
...  

Two nucleotide differences in the P/C/V and M genes between B95a cell- and Vero cell-isolated wild-type measles viruses (MV) have previously been found from the same patient. The nucleotide difference in the P/C/V gene resulted in an amino acid difference (M175I) in the P and V proteins and a 19 aa deletion in the C protein. The nucleotide difference in the M gene resulted in an amino acid difference (P64H) in the M protein. To verify this result and to examine further whether the amino acid difference or truncation is important for MV cell tropism, recombinant MV strains containing one of the two nucleotide substitutions, or both, were generated. It was found that the P64H substitution in the M protein was important for efficient virus growth and dissemination in Vero cells and that the M175I substitution in the P and V protein or truncation of the C protein was required for optimal growth.


2021 ◽  
Author(s):  
Ryuichi Takemoto ◽  
Tateki Suzuki ◽  
Takao Hashiguchi ◽  
Yusuke Yanagi ◽  
Yuta Shirogane

Measles virus (MeV), an enveloped RNA virus in the family Paramyxoviridae , usually causes acute febrile illness with skin rash, but in rare cases persists in the brain, causing a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE). MeV bears two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. The H protein possesses a head domain that initially mediates receptor binding and a stalk domain that subsequently transmits the fusion-triggering signal to the F protein. We have recently shown that cell adhesion molecule 1 (CADM1, also known as IGSF4A, Necl-2, SynCAM1) and CADM2 (also known as IGSF4D, Necl-3, SynCAM2) are host factors enabling cell-cell membrane fusion mediated by hyperfusogenic F proteins of neuropathogenic MeVs as well as MeV spread between neurons lacking the known receptors. CADM1 and CADM2 interact in cis with the H protein on the same cell membrane, triggering hyperfusogenic F protein-mediated membrane fusion. Multiple isoforms of CADM1 and CADM2 containing various lengths of their stalk regions are generated by alternative splicing. Here we show that only short-stalk isoforms of CADM1 and CADM2 predominantly expressed in the brain induce hyperfusogenic F protein-mediated membrane fusion. While the known receptors interact in trans with the H protein through its head domain, these isoforms can interact in cis even with the H protein lacking the head domain and trigger membrane fusion, presumably through its stalk domain. Thus, our results unveil a new mechanism of viral fusion triggering by host factors. Importance Measles, an acute febrile illness with skin rash, is still an important cause of childhood morbidity and mortality worldwide. Measles virus (MeV), the causative agent of measles, may also cause a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. The disease is fatal, and no effective therapy is available. Recently, we have reported that cell adhesion molecule 1 (CADM1) and CADM2 are host factors enabling MeV cell-to-cell spread in neurons. These molecules interact in cis with the MeV attachment protein on the same cell membrane, triggering the fusion protein and causing membrane fusion. CADM1 and CADM2 are known to exist in multiple splice isoforms. In this study, we report that their short-stalk isoforms can induce membrane fusion by interacting in cis with the viral attachment protein independently of its receptor-binding head domain. This finding may have important implications for cis -acting fusion triggering by host factors.


2009 ◽  
Vol 83 (14) ◽  
pp. 7244-7251 ◽  
Author(s):  
Mary Carsillo ◽  
Kay Klapproth ◽  
Stefan Niewiesk

ABSTRACT Measles virus infection leads to immune suppression. A potential mechanism is the reduction of interleukin 12 (IL-12) secretion during acute measles, resulting in a TH2 response. Studies in humans have reported conflicting results, detecting either a TH2 or a TH1 response. We have investigated the correlation between a TH2 response and immune suppression in specific-pathogen-free inbred cotton rats which were infected with measles vaccine and wild-type viruses. After infection of bone marrow-derived macrophages with wild-type virus, IL-12 secretion was reduced in contrast to the level for vaccine virus infection. In bronchoalveolar lavage cells, IL-12 secretion was suppressed after infection with both wild-type and vaccine virus on days 2, 4, and 6 and was detectable on days 8 and 10. After stimulation of mediastinal lymph node and spleen cells with UV-inactivated measles virus at various time points after infection, gamma interferon but no IL-4 was found. After stimulation with phorbol myristate acetate-ionomycin, high gamma interferon and low IL-4 levels were detected. To investigate whether the secretion of IL-4 contributes to immune suppression, a recombinant vaccine virus was created which secretes cotton rat IL-4. After infection with this recombinant virus, IL-4 secretion was enhanced. However, neither inhibition of concanavalin A-stimulated spleen cells nor keyhole limpet hemocyanin-specific proliferation of spleen cells was altered after infection with the recombinant virus in comparison to the levels with the parental virus. Our data indicate that measles virus infection leads to a decrease in IL-12 secretion and an increase in IL-4 secretion, but this does not seem to correlate with immune suppression.


2005 ◽  
Vol 202 (9) ◽  
pp. 1185-1190 ◽  
Author(s):  
Michael B.A. Oldstone ◽  
Samuel Dales ◽  
Antoinette Tishon ◽  
Hanna Lewicki ◽  
Lee Martin

Subacute sclerosing panencephalitis (SSPE) is a progressive fatal neurodegenerative disease associated with persistent infection of the central nervous system (CNS) by measles virus (MV), biased hypermutations of the viral genome affecting primarily the matrix (M) gene with the conversion of U to C and A to G bases, high titers of antibodies to MV, and infiltration of B cells and T cells into the CNS. Neither the precipitating event nor biology underlying the MV infection is understood, nor is their any satisfactory treatment. We report the creation of a transgenic mouse model that mimics the cardinal features of SSPE. This was achieved by initially infecting mice expressing the MV receptor with lymphocytic choriomeningitis virus Cl 13, a virus that transiently suppressed their immune system. Infection by MV 10 days later resulted in persistent MV infection of neurons. Analysis of brains from infected mice showed the biased U to C hypermutations in the MV M gene and T and B lymphocyte infiltration. These sera contained high titers of antibodies to MV. Thus, a small animal model is now available to both molecularly probe the pathogenesis of SSPE and to test a variety of therapies to treat the disease.


Sign in / Sign up

Export Citation Format

Share Document