scholarly journals RNA Polymerase Mutations Selected during Experimental Evolution Enhance Replication of a Hybrid Vaccinia Virus with an Intermediate Transcription Factor Subunit Replaced by the Myxoma Virus Ortholog

2018 ◽  
Vol 92 (20) ◽  
Author(s):  
Carey A. Stuart ◽  
Erik K. Zhivkoplias ◽  
Tatiana G. Senkevich ◽  
Linda S. Wyatt ◽  
Bernard Moss

ABSTRACTHigh-throughput DNA sequencing enables the study of experimental evolution in near real time. Until now, mutants with deletions of nonessential host range genes were used in experimental evolution of vaccinia virus (VACV). Here, we guided the selection of adaptive mutations that enhanced the fitness of a hybrid virus in which an essential gene had been replaced with an ortholog from another poxvirus genus. Poxviruses encode a complete system for transcription, including RNA polymerase and stage-specific transcription factors. The abilities of orthologous intermediate transcription factors from other poxviruses to substitute for those of VACV, as determined by transfection assays, corresponded with the degree of amino acid identity. VACV in which the A8 or A23 intermediate transcription factor subunit gene was replaced by the myxoma (MYX) virus ortholog exhibited decreased replication. During three parallel serial passages of the hybrid virus with the MYXA8 gene, plaque sizes and virus yields increased. DNA sequencing of virus populations at passage 10 revealed high frequencies of five different single nucleotide mutations in the two largest RNA polymerase subunits, RPO147 and RPO132, and two different Kozak consensus sequence mutations predicted to increase translation of the MYXA8 mRNA. Surprisingly, there were no mutations within either intermediate transcription factor subunit. Based on homology withSaccharomyces cerevisiaeRNA polymerase, the VACV mutations were predicted to be buried within the internal structure of the enzyme. By directly introducing single nucleotide substitutions into the genome of the original hybrid virus, we demonstrated that both RNA polymerase and translation-enhancing mutations increased virus replication independently.IMPORTANCEPrevious studies demonstrated the experimental evolution of vaccinia virus (VACV) following deletion of a host range gene important for evasion of host immune defenses. We have extended experimental evolution to essential genes that cannot be deleted but could be replaced by a divergent orthologous gene from another poxvirus. Replacement of a VACV transcription factor gene with one from a distantly related poxvirus led to decreased fitness as evidenced by diminished replication. Serially passaging the hybrid virus at a low multiplicity of infection provided conditions for selection of adaptive mutations that improved replication. Notably, these included five independent mutations of the largest and second largest RNA polymerase subunits. This approach should be generally applicable for investigating adaptation to swapping of orthologous genes encoding additional essential proteins of poxviruses as well as other viruses.

2020 ◽  
Vol 94 (18) ◽  
Author(s):  
Tatiana G. Senkevich ◽  
Erik K. Zhivkoplias ◽  
Andrea S. Weisberg ◽  
Bernard Moss

ABSTRACT Unlike RNA viruses, most DNA viruses replicate their genomes with high-fidelity polymerases that rarely make base substitution errors. Nevertheless, experimental evolution studies have revealed rapid acquisition of adaptive mutations during serial passage of attenuated vaccinia virus (VACV). One way in which adaptation can occur is by an accordion mechanism in which the gene copy number increases followed by base substitutions and, finally, contraction of the gene copy number. Here, we show rapid acquisition of multiple adaptive mutations mediated by a gene-inactivating frameshift mechanism during passage of an attenuated VACV. Attenuation had been achieved by exchanging the VACV A8R intermediate transcription factor gene with the myxoma virus ortholog. A total of seven mutations in six different genes occurred in three parallel passages of the attenuated virus. The most frequent mutations were single-nucleotide insertions or deletions within runs of five to seven As or Ts, although a deletion of 11 nucleotides also occurred, leading to frameshifts and premature stop codons. During 10 passage rounds, the attenuated VACV was replaced by the mutant viruses. At the end of the experiment, virtually all remaining viruses had one fixed mutation and one or more additional mutations. Although nucleotide substitutions in the transcription apparatus accounted for two low-frequency mutations, frameshifts in genes encoding protein components of the mature virion, namely, A26L, G6R, and A14.5L, achieved 74% to 98% fixation. The adaptive role of the mutations was confirmed by making recombinant VACV with A26L or G6R or both deleted, which increased virus replication levels and decreased particle/PFU ratios. IMPORTANCE Gene inactivation is considered to be an important driver of orthopoxvirus evolution. Whereas cowpox virus contains intact orthologs of genes present in each orthopoxvirus species, numerous genes are inactivated in all other members of the genus. Inactivation of additional genes can occur upon extensive passaging of orthopoxviruses in cell culture leading to attenuation in vivo, a strategy for making vaccines. Whether inactivation of multiple viral genes enhances replication in the host cells or has a neutral effect is unknown in most cases. Using an experimental evolution protocol involving serial passages of an attenuated vaccinia virus, rapid acquisition of inactivating frameshift mutations occurred. After only 10 passage rounds, the starting attenuated vaccinia virus was displaced by viruses with one fixed mutation and one or more additional mutations. The high frequency of multiple inactivating mutations during experimental evolution simulates their acquisition during normal evolution and extensive virus passaging to make vaccine strains.


2008 ◽  
Vol 36 (4) ◽  
pp. 595-598 ◽  
Author(s):  
Laura M. Elsby ◽  
Stefan G.E. Roberts

Transcription by RNA polymerase II requires the assembly of the general transcription factors at the promoter to form a pre-initiation complex. The general transcription factor TF (transcription factor) IIB plays a central role in the assembly of the pre-initiation complex, providing a bridge between promoter-bound TFIID and RNA polymerase II/TFIIF. We have characterized a series of TFIIB mutants in their ability to support transcription and recruit RNA polymerase II to the promoter. Our analyses identify several residues within the TFIIB zinc ribbon that are required for RNA polymerase II assembly. Using the structural models of TFIIB, we describe the interface between the TFIIB zinc ribbon region and RNA polymerase II.


2009 ◽  
Vol 83 (23) ◽  
pp. 12018-12026 ◽  
Author(s):  
Zhilong Yang ◽  
Bernard Moss

ABSTRACT A multisubunit RNA polymerase (RPO) encoded by vaccinia virus (VACV), in conjunction with specific factors, transcribes early, intermediate, and late viral genes. However, an additional virus-encoded polypeptide referred to as the RPO-associated protein of 94 kDa (RAP94) is tightly bound to the RPO for the transcription of early genes. Unlike the eight RPO core subunits, RAP94 is synthesized exclusively at late times after infection. Furthermore, RAP94 is necessary for the packaging of RPO and other components needed for early transcription in assembling virus particles. The direct association of RAP94 with NPH I, a DNA-dependent ATPase required for transcription termination, and the multifunctional poly(A) polymerase small subunit/2′-O-methyltransferase/elongation factor was previously demonstrated. That RAP94 provides a structural and functional link between the core RPO and the VACV early transcription factor (VETF) has been suspected but not previously demonstrated. Using VACV recombinants that constitutively or inducibly express VETF subunits and RAP94 with affinity tags, we showed that (i) VETF associates only with RPO containing RAP94 in vivo and in vitro, (ii) the association of RAP94 with VETF requires both subunits of the latter, (iii) neither viral DNA nor other virus-encoded late proteins are required for the interaction of RAP94 with VETF and core RPO subunits, (iv) different domains of RAP94 bind VETF and core subunits of RPO, and (v) NPH I and VETF bind independently and possibly simultaneously to the N-terminal region of RAP94. Thus, RAP94 provides the bridge between the RPO and proteins needed for transcription initiation, elongation, and termination.


1994 ◽  
Vol 14 (6) ◽  
pp. 3588-3595
Author(s):  
H M Dunstan ◽  
L S Young ◽  
K U Sprague

Promoter-specific transcription by silkworm RNA polymerase III is dependent on several transcription factors (TFs) in addition to the polymerase itself. The activities present in silk gland nuclear extracts that are necessary to reconstitute transcription from class III genes in vitro have been resolved into several partially purified components. These include TFIIIR, which is unusual because it is composed of RNA. Here, we identify the RNA that provides TFIIIR activity as silkworm tRNA(IleIAU). This conclusion is based on copurification of tRNA(IleIAU) with TFIIIR activity, TFIIIR activity in synthetic tRNA(Ile), and hybrid selection of TFIIIR activity by antisense tRNA(IleIAU). We have tested the ability of a variety of other tRNAs to stimulate transcription and find that TFIIIR activity is highly specific to silkworm tRNA(IleIAU).


1999 ◽  
Vol 77 (5) ◽  
pp. 431-438 ◽  
Author(s):  
Jürgen Müller ◽  
Bernd-Joachim Benecke

Transcription of the human 7SL RNA gene by RNA polymerase III depends on the concerted action of transcription factors binding to the gene-internal and gene-external parts of its promoter. Here, we investigated which transcription factors interact with the human 7SL RNA gene promoter and which are required for transcription of the human 7SL RNA gene. A-box/B-box elements were previously identified in 5S RNA, tRNA, and virus associated RNA genes and are recognized by transcription factor IIIC (TFIIIC). The gene-internal promoter region of the human 7SL RNA gene shows only limited similarity to those elements. Nevertheless, competition experiments and the use of highly enriched factor preparations demonstrate that TFIIIC is required for human 7SL transcription. The gene-external part of the promoter includes an authentic cAMP-responsive element previously identified in various RNA polymerase II promoters. Here we demonstrate that members of the activating transcription factor/cyclic AMP-responsive element binding protein (ATF/CREB) transcription factor family bind specifically to this element in vitro. However, the human 7SL RNA gene is not regulated by cAMP in vivo. Furthermore, in vitro transcription of the gene does not depend on ATF/CREB transcription factors. It rather appears that a transcription factor with DNA-binding characteristics like ATF/CREB proteins but otherwise different properties is required for human 7SL RNA transcription.Key words: 7SL RNA, ATF, CRE, TFIIIC, RNA polymerase III.


2020 ◽  
Vol 6 (4) ◽  
pp. 277
Author(s):  
Jianhua Zhang ◽  
Jan Zoll ◽  
Tobias Engel ◽  
Joost van den Heuvel ◽  
Paul E. Verweij ◽  
...  

Azole-resistant Aspergillus fumigatus isolates recovered at high frequency from patients, harbor mutations that are associated with variation of promoter length in the cyp51A gene. Following the discovery of the TR34/L98H genotype, new variations in tandem repeat (TR) length and number of repeats were identified, as well as additional single nucleotide polymorphisms (SNPs) in the cyp51A gene, indicating that the diversity of resistance mutations in A. fumigatus is likely to continue to increase. Investigating the development routes of TR variants is critical to be able to design preventive interventions. In this study, we tested the potential effects of azole exposure on the selection of TR variations, while allowing haploid A. fumigatus to undergo asexual reproduction. Through experimental evolution involving voriconazole (VOR) exposure, an isolate harboring TR343/L98H evolved from a clinical TR34/L98H ancestor isolate, confirmed by whole genome sequencing. TR343/L98H was associated with increased cyp51A expression and high VOR and posaconazole MICs, although additional acquired SNPs could also have contributed to the highly azole-resistant phenotype. Exposure to medical azoles was found to select for TR343, thus supporting the possibility of in-host selection of TR34 variants.


1987 ◽  
Vol 7 (11) ◽  
pp. 3880-3887 ◽  
Author(s):  
L G Fradkin ◽  
S K Yoshinaga ◽  
A J Berk ◽  
A Dasgupta

The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription of RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoter, however, was not altered by infection of cells with the virus. We conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.


Sign in / Sign up

Export Citation Format

Share Document