scholarly journals CD8lowCD100−T Cells Identify a Novel CD8 T Cell Subset Associated with Viral Control during Human Hantaan Virus Infection

2015 ◽  
Vol 89 (23) ◽  
pp. 11834-11844 ◽  
Author(s):  
Bei Liu ◽  
Ying Ma ◽  
Yusi Zhang ◽  
Chunmei Zhang ◽  
Jing Yi ◽  
...  

ABSTRACTHantaan virus (HTNV) infection can cause a severe lethal hemorrhagic fever with renal syndrome (HFRS) in humans. CD8+T cells play a critical role in combating HTNV infections. However, the contributions of different CD8+T cell subsets to the immune response against viral infection are poorly understood. Here, we identified a novel subset of CD8+T cells characterized by the CD8lowCD100−phenotype in HFRS patients. The CD8lowCD100−subset accounted for a median of 14.3% of the total CD8+T cells in early phase of HFRS, and this percentage subsequently declined in the late phase of infection, whereas this subset was absent in healthy controls. Furthermore, the CD8lowCD100−cells were associated with high activation and expressed high levels of cytolytic effector molecules and exhibited a distinct expression profile of effector CD8+T cells (CCR7+/−CD45RA−CD127highCD27intCD28lowCD62L−). When stimulated with specific HTNV nucleocapsid protein-derived peptide pools, most responding CD8+cells (gamma interferon [IFN-γ] positive and/or tumor necrosis factor alpha [TNF-α] positive) were CD8lowCD100−cells. The frequency of CD8lowCD100−cells among HTNV-specific CD8+T cells was higher in milder cases than in more severe cases. Importantly, the proportion of the CD8lowCD100−subset among CD8+T cells in early phase of HFRS was negatively correlated with the HTNV viral load, suggesting that CD8lowCD100−cells may be associated with viral clearance. The contraction of the CD8lowCD100−subset in late phase of infection may be related to the consistently high expression levels of PD-1. These results may provide new insights into our understanding of CD8+T cell-mediated protective immunity as well as immune homeostasis after HTNV infection in humans.IMPORTANCECD8+T cells play important roles in the antiviral immune response. We found that the proportion of CD8lowCD100−cells among CD8+T cells from HFRS patients was negatively correlated with the HTNV viral load, and the frequency of CD8lowCD100−cells among virus-specific CD8+T cells was higher in milder HFRS cases than in more severe cases. These results imply a beneficial role for the CD8lowCD100−cell subset in viral control during human HTNV infection.

Author(s):  
Moritz Anft ◽  
Krystallenia Paniskaki ◽  
Arturo Blazquez-Navarro ◽  
Adrian Doevelaar ◽  
Felix S. Seibert ◽  
...  

AbstractBackgroundThe efficacy of the humoral and cellular immunity determines the outcome of viral infections. An appropriate immune response mediates protection, whereas an overwhelming immune response has been associated with immune-mediated pathogenesis in viral infections. The current study explored the general and SARS-CoV-2 specific cellular and humoral immune status in patients with different COVID-19 severities.MethodsIn this prospective study, we included 53 patients with moderate, severe, and critical COVID-19 manifestations comparing their quantitative, phenotypic, and functional characteristics of circulating immune cells, SARS-CoV-2 antigen specific T-cells, and humoral immunity.ResultsSignificantly diminished frequencies of CD8+T-cells, CD4+ and CD8+T-cell subsets with activated differentiated memory/effector phenotype and migratory capacity were found in circulation in patients with severe and/or critical COVID-19 as compared to patients with moderate disease. Importantly, the improvement of the clinical courses from severe to moderate was accompanied by an improvement in the T-cell subset alterations. Furthermore, we surprisingly observed a detectable SARS-CoV-2-reactive T-cell response in all three groups after stimulation with SARS-CoV-2 S-protein overlapping peptide pool already at the first visit. Of note, patients with a critical COVID-19 demonstrated a stronger response of SARS-CoV-2-reactive T-cells producing Th1 associated inflammatory cytokines. Furthermore, clear correlation between antibody titers and SARS-CoV-2-reactive CD4+ frequencies underscore the role of specific immunity in disease progression.ConclusionOur data demonstrate that depletion of activated memory phenotype circulating T-cells and a strong SARS-CoV-2-specific cellular and humoral immunity are associated with COVID-19 disease severity. This counter-intuitive finding may have important implications for diagnostic, therapeutic and prophylactic COVID-19 management.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Mingde Li ◽  
Danlin Yao ◽  
Xiangbo Zeng ◽  
Dimitri Kasakovski ◽  
Yikai Zhang ◽  
...  

Abstract T cells are fundamental effector cells against viruses and cancers that can be divided into different subsets based on their long-term immune protection and immediate immune response effects. The percentage and absolute number of these subsets change with ageing, which leads to a reduced immune response in older individuals. Stem cell memory T cells (TSCM) represent a small population of memory T cells with enhanced proliferation and differentiation properties that are endowed with high potential for maintaining T cell homeostasis. However, whether these cells change with ageing and gender remains unknown. Here, we assayed the distribution of TSCM and other T cell subsets in peripheral blood from 92 healthy subjects (44 females and 48 males) ranging from 3 to 88 years old by flow cytometry. We found that CD4+ and CD8+ TSCM in the circulation have relatively stable frequencies, and the absolute number of CD8+ TSCM decreased with age; however, the ratio of TSCM to the CD4+ or CD8+ naïve population increased with age. Unlike the obvious changes in other T cell subsets with age and gender, the stable level of TSCM in peripheral blood may support their capacity for sustaining long-term immunological memory, while their importance may increase together with ageing.


Author(s):  
Kristen Orumaa ◽  
Margaret R. Dunne

AbstractCOVID-19 is a respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first documented in late 2019, but within months, a worldwide pandemic was declared due to the easily transmissible nature of the virus. Research to date on the immune response to SARS-CoV-2 has focused largely on conventional B and T lymphocytes. This review examines the emerging role of unconventional T cell subsets, including γδ T cells, invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells in human SARS-CoV-2 infection.Some of these T cell subsets have been shown to play protective roles in anti-viral immunity by suppressing viral replication and opsonising virions of SARS-CoV. Here, we explore whether unconventional T cells play a protective role in SARS-CoV-2 infection as well. Unconventional T cells are already under investigation as cell-based immunotherapies for cancer. We discuss the potential use of these cells as therapeutic agents in the COVID-19 setting. Due to the rapidly evolving situation presented by COVID-19, there is an urgent need to understand the pathogenesis of this disease and the mechanisms underlying its immune response. Through this, we may be able to better help those with severe cases and lower the mortality rate by devising more effective vaccines and novel treatment strategies.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3662-3672 ◽  
Author(s):  
Nobukazu Watanabe ◽  
Stephen C. De Rosa ◽  
Anthony Cmelak ◽  
Richard Hoppe ◽  
Leonore A. Herzenberg ◽  
...  

Abstract We investigated the representation of T cells in patients who had been treated for Hodgkin's disease (HD). We found a marked depletion in both CD4 and CD8 naive T-cell counts that persists up to 30 years after completion of treatment. In contrast, CD4 and CD8 memory T-cell subsets recovered to normal or above normal levels by 5 years posttreatment. Thus, the previously-reported long-term deficit in total CD4 T-cell counts after treatment for HD is due to specific depletion of naive T cells. Similarly, total CD8 T-cell counts return to normal by 5 years only because CD8 memory T cells expand to higher than normal levels. These findings suggest that the treatment (mediastinal irradiation) results in a longterm dysregulation of T-cell subset homeostasis. The profound depletion of naive T cells may explain the altered T-cell function in treated patients, including the poor response to immunization after treatment for HD. Further, in some individuals, we identified expansions of unusual subsets expressing low levels of CD8. Eight-color fluorescence-activated cell sorting analyses showed that these cells largely express CD8αα homodimers and CD57, consistent with the phenotype of potentially extrathymically derived T cells. In addition, these cells, both CD4+ and CD4−, are probably cytotoxic lymphocytes, as they express high levels of intracellular perforin. In adults treated for HD, an increased activity of extrathymic T-cell differentiation may partially compensate for the loss of thymic-derived T cells.


2021 ◽  
Author(s):  
Aline Teixeira ◽  
Alexandria Gillespie ◽  
Alehegne Yirsaw ◽  
Emily Britton ◽  
Janice Telfer ◽  
...  

Pathogenic Leptospira species cause leptospirosis, a neglected zoonotic disease recognized as a global public health problem. It is also the cause of the most common cattle infection that results in major economic losses due to reproductive problems. γδ T cells play a role in the protective immune response in livestock species against Leptospira while human γδ T cells also respond to Leptospira. Thus, activation of γδ T cells has emerged as a potential component for optimization of vaccine strategies. Bovine γδ T cells proliferate and produce IFN-γ in response to vaccination with inactivated leptospires and this response is mediated by a specific subpopulation of the WC1-bearing γδ T cells. WC1 molecules are members of the group B scavenger receptor cysteine rich (SRCR) superfamily and are composed of multiple SRCR domains, of which particular extracellular domains act as ligands for Leptospira. Since WC1 molecules function as both pattern recognition receptors and γδ TCR coreceptors, the WC1 system has been proposed as a novel target to engage γδ T cells. Here, we demonstrate the involvement of leptospiral protein antigens in the activation of WC1+ γδ T cells and identified two leptospiral outer membrane proteins able to interact directly with them. Interestingly, we show that the protein-specific γδ T cell response is composed of WC1.1+ and WC1.2+ subsets, although a greater number of WC1.1+ γδ T cells respond. Identification of protein antigens will enhance our understanding of the role γδ T cells play in the leptospiral immune response and in recombinant vaccine development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pavel V. Shelyakin ◽  
Ksenia R. Lupyr ◽  
Evgeny S. Egorov ◽  
Ilya A. Kofiadi ◽  
Dmitriy B. Staroverov ◽  
...  

The interplay between T- and B-cell compartments during naïve, effector and memory T cell maturation is critical for a balanced immune response. Primary B-cell immunodeficiency arising from X-linked agammaglobulinemia (XLA) offers a model to explore B cell impact on T cell subsets, starting from the thymic selection. Here we investigated characteristics of naïve and effector T cell subsets in XLA patients, revealing prominent alterations in the corresponding T-cell receptor (TCR) repertoires. We observed immunosenescence in terms of decreased diversity of naïve CD4+ and CD8+ TCR repertoires in XLA donors. The most substantial alterations were found within naïve CD4+ subsets, and we have investigated these in greater detail. In particular, increased clonality and convergence, along with shorter CDR3 regions, suggested narrower focused antigen-specific maturation of thymus-derived naïve Treg (CD4+CD45RA+CD27+CD25+) in the absence of B cells - normally presenting diverse self and commensal antigens. The naïve Treg proportion among naïve CD4 T cells was decreased in XLA patients, supporting the concept of impaired thymic naïve Treg selection. Furthermore, the naïve Treg subset showed prominent differences at the transcriptome level, including increased expression of genes specific for antigen-presenting and myeloid cells. Altogether, our findings suggest active B cell involvement in CD4 T cell subsets maturation, including B cell-dependent expansion of the naïve Treg TCR repertoire that enables better control of self-reactive T cells.


2020 ◽  
Vol 5 (49) ◽  
pp. eabc9492 ◽  
Author(s):  
Lauren J. Howson ◽  
Wael Awad ◽  
Anouk von Borstel ◽  
Hui Jing Lim ◽  
Hamish E. G. McWilliam ◽  
...  

The role unconventional T cells play in protective immunity in humans is unclear. Mucosal-associated invariant T (MAIT) cells are an unconventional T cell subset restricted to the antigen-presenting molecule MR1. Here, we report the discovery of a patient homozygous for a rare Arg31His (R9H in the mature protein) mutation in MR1 who has a history of difficult-to-treat viral and bacterial infections. MR1R9H was unable to present the potent microbially derived MAIT cell stimulatory ligand. The MR1R9H crystal structure revealed that the stimulatory ligand cannot bind due to the mutation lying within, and causing structural perturbation to, the ligand-binding domain of MR1. While MR1R9H could bind and be up-regulated by a MAIT cell inhibitory ligand, the patient lacked circulating MAIT cells. This shows the importance of the stimulatory ligand for MAIT cell selection in humans. The patient had an expanded γδ T cell population, indicating a compensatory interplay between these unconventional T cell subsets.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1974 ◽  
Author(s):  
Linde Dekker ◽  
Coco de Koning ◽  
Caroline Lindemans ◽  
Stefan Nierkens

Allogeneic (allo) hematopoietic cell transplantation (HCT) is the only curative treatment option for patients suffering from chemotherapy-refractory or relapsed hematological malignancies. The occurrence of morbidity and mortality after allo-HCT is still high. This is partly correlated with the immunological recovery of the T cell subsets, of which the dynamics and relations to complications are still poorly understood. Detailed information on T cell subset recovery is crucial to provide tools for better prediction and modulation of adverse events. Here, we review the current knowledge regarding CD4+ and CD8+ T cells, γδ T cells, iNKT cells, Treg cells, MAIT cells and naive and memory T cell reconstitution, as well as their relations to outcome, considering different cell sources and immunosuppressive therapies. We conclude that the T cell subsets reconstitute in different ways and are associated with distinct adverse and beneficial events; however, adequate reconstitution of all the subsets is associated with better overall survival. Although the exact mechanisms involved in the reconstitution of each T cell subset and their associations with allo-HCT outcome need to be further elucidated, the data and suggestions presented here point towards the development of individualized approaches to improve their reconstitution. This includes the modulation of immunotherapeutic interventions based on more detailed immune monitoring, aiming to improve overall survival changes.


Author(s):  
Hannah Kaminski ◽  
Coline Ménard ◽  
Bouchra El Hayani ◽  
And-Nan Adjibabi ◽  
Gabriel Marsères ◽  
...  

Abstract Cytomegalovirus (CMV) is a major infectious cause of death and disease after transplantation. We have previously demonstrated that the tissue-associated adaptive Vδ2neg γδ T cells are key effectors responding to CMV and associated with recovery, contrasting with their innatelike circulating counterparts, the Vγ9posVδ2pos T cells that respond to phosphoantigens but not to CMV. A third Vγ9negVδ2pos subgroup with adaptive functions has been described in adults. In the current study, we demonstrate that these Vγ9negVδ2pos T cells are also components of the CMV immune response while presenting with distinct characteristics from Vδ2neg γδ T cells. In a cohort of kidney transplant recipients, CMV seropositivity was the unique clinical parameter associated with Vγ9negVδ2pos T-cell expansion and differentiation. Extensive phenotyping demonstrated their substantial cytotoxic potential and activation during acute CMV primary infection or reinfection. In vitro, Vγ9negVδ2pos T cells responded specifically to CMV-infected cells in a T-cell receptor–dependent manner and through strong interferon γ production. Finally, Vγ9negVδ2pos T cells were the only γδ T-cell subset in which expansion was tightly correlated with the severity of CMV disease. To conclude, our results identify a new player in the immune response against CMV and open interesting clinical perspectives for using Vγ9negVδ2pos T cells as an immune marker for CMV disease severity in immunocompromised patients.


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Timothy J Stevenson ◽  
Youssef Barbour ◽  
Brian J McMahon ◽  
Lisa Townshend-Bulson ◽  
Annette M Hewitt ◽  
...  

Abstract Background Chronic hepatitis C virus (HCV) infection diminishes immune function through cell exhaustion and repertoire alteration. Direct acting antiviral (DAA)-based therapy can restore immune cell subset function and reduce exhaustion states. However, the extent of immune modulation following DAA-based therapy and the role that clinical and demographic factors play remain unknown. Methods We examined natural killer (NK) cell, CD4+, and CD8+ T cell subsets along with activation and exhaustion phenotypes across an observational study of sofosbuvir-based treatment for chronic HCV infection. Additionally, we examined the ability of clinical variables and duration of infection to predict 12 weeks of sustained virologic response (SVR12) immune marker outcomes. Results We show that sofosbuvir-based therapy restores NK cell subset distributions and reduces chronic activation by SVR12. Likewise, T cell subsets, including HCV-specific CD8+ T cells, show reductions in chronic exhaustion markers by SVR12. Immunosuppressive CD4+ regulatory T cells decrease at 4-weeks treatment and SVR12. We observe the magnitude and direction of change in immune marker values from pretreatment to SVR12 varies greatly among participants. Although we observed associations between the estimated date of infection, HCV diagnosis date, and extent of immune marker outcome at SVR12, our regression analyses did not indicate any factors as strong SVR12 outcome predictors. Conclusion Our study lends further evidence of immune changes following sofosbuvir-based therapy. Further investigation beyond SVR12 and into factors that may predict posttreatment outcome is warranted.


Sign in / Sign up

Export Citation Format

Share Document