scholarly journals Independent and Cooperative Antiviral Actions of Beta Interferon and Gamma Interferon against Herpes Simplex Virus Replication in Primary Human Fibroblasts

2007 ◽  
Vol 82 (4) ◽  
pp. 1934-1945 ◽  
Author(s):  
Tao Peng ◽  
Jia Zhu ◽  
Yon Hwangbo ◽  
Lawrence Corey ◽  
Roger E. Bumgarner

ABSTRACT Type I and type II interferons (IFNs) act in synergy to inhibit the replication of a variety of viruses, including herpes simplex virus (HSV). To understand the mechanism of this effect, we have analyzed the transcriptional profiles of primary human fibroblast cells that were first treated with IFN-β1, IFN-γ, or a combination of both and then subsequently infected with HSV-1. We have identified two types of synergistic activities in the gene expression patterns induced by IFN-β1 and IFN-γ that may contribute to inhibition of HSV-1 replication. The first is defined as “synergy by independent action,” in which IFN-β1 and IFN-γ induce distinct gene categories. The second, “synergy by cooperative action,” is a term that describes the positive interaction between IFN-β1 and IFN-γ as defined by a two-way analysis of variance. This form of synergy leads to a much higher level of expression for a subset of genes than is seen with either interferon alone. The cooperatively induced genes by IFN-β1 and IFN-γ include those involved in apoptosis, RNA degradation, and the inflammatory response. Furthermore, the combination of IFN-β1 and IFN-γ induces significantly more apoptosis and inhibits HSV-1 gene expression and DNA replication significantly more than treatment with either interferon alone. Taken together, these data suggest that IFN-β1 and IFN-γ work both independently and cooperatively to create an antiviral state that synergistically inhibits HSV-1 replication in primary human fibroblasts and that cooperatively induced apoptosis may play a role in the synergistic effect on viral replication.

2009 ◽  
Vol 83 (23) ◽  
pp. 12559-12568 ◽  
Author(s):  
Tao Peng ◽  
Jia Zhu ◽  
Alexis Klock ◽  
Khamsone Phasouk ◽  
Meei-Li Huang ◽  
...  

ABSTRACT Understanding the mechanisms by which herpes simplex virus (HSV) evades host immune defenses is critical to defining new approaches for therapy and prevention. We performed transcriptional analyses and immunocytochemistry on sequential biopsy specimens of lesional tissue from the acute through the posthealing phases of recurrent mucocutaneous HSV-2 infection. Histological analysis of these biopsy specimens during the acute stage revealed a massive infiltration of T cells, as well as monocytes/macrophages, a large amount of myeloid, and a small number of plasmacytoid dendritic cells, in the dermis of these lesional biopsy specimens. Type I interferon (IFN-β and IFN-α) was poorly expressed and gamma IFN (IFN-γ) potently induced during time periods in which we detected abundant amounts of HSV-2 antigens and HSV-2 RNA. IFN-stimulated genes were also markedly upregulated, with expression patterns that more closely matched those in primary human fibroblasts treated by IFN-γ than those in fibroblasts treated by IFN-β. Transcriptional arrays of the same lesional biopsy sites during healing and at 2 and 4 weeks posthealing revealed no HSV nucleic acids or antigen; however, there was persistent expression of IFN-γ, with very low levels of IFN-β and IFN-α. The findings of extremely low levels of IFN-α and IFN-β, despite the presence of a large number of cells capable of synthesizing these substances, suggest a potent alteration in host defense during HSV-2 infection in vivo. HSV-2's blockade of the innate immune system's production of type I IFN may be a major factor in allowing the virus to break through host mucosal defenses.


2007 ◽  
Vol 82 (6) ◽  
pp. 2661-2672 ◽  
Author(s):  
Roger D. Everett ◽  
Carlos Parada ◽  
Philippe Gripon ◽  
Hüseyin Sirma ◽  
Anne Orr

ABSTRACT Herpes simplex virus type 1 (HSV-1) mutants that fail to express the viral immediate-early protein ICP0 have a pronounced defect in viral gene expression and plaque formation in limited-passage human fibroblasts. ICP0 is a RING finger E3 ubiquitin ligase that induces the degradation of several cellular proteins. PML, the organizer of cellular nuclear substructures known as PML nuclear bodies or ND10, is one of the most notable proteins that is targeted by ICP0. Depletion of PML from human fibroblasts increases ICP0-null mutant HSV-1 gene expression, but not to wild-type levels. In this study, we report that depletion of Sp100, another major ND10 protein, results in a similar increase in ICP0-null mutant gene expression and that simultaneous depletion of both proteins complements the mutant virus to a greater degree. Although chromatin assembly and modification undoubtedly play major roles in the regulation of HSV-1 infection, we found that inhibition of histone deacetylase activity with trichostatin A was unable to complement the defect of ICP0-null mutant HSV-1 in either normal or PML-depleted human fibroblasts. These data lend further weight to the hypothesis that ND10 play an important role in the regulation of HSV-1 gene expression.


2001 ◽  
Vol 75 (20) ◽  
pp. 9596-9600 ◽  
Author(s):  
Sabine Vollstedt ◽  
Marco Franchini ◽  
Gottfried Alber ◽  
Mathias Ackermann ◽  
Mark Suter

ABSTRACT Interferon (IFN) type I (alpha/beta IFN [IFN-α/β]) is very important in directly controlling herpes simplex virus type I (HSV-1) replication as well as in guiding and upregulating specific immunity against this virus. By contrast, the roles of IFN type II (IFN-γ) and antibodies in the defense against HSV-1 are not clear. Mice without a functional IFN system and no mature B and T cells (AGR mice) did not survive HSV-1 infection in the presence or absence of neutralizing antibodies to the virus. Mice without a functional IFN type I system and with no mature B and T cells (AR129 mice) were unable to control infection with as little as 10 PFU of HSV-1 strain F. By contrast, in the presence of passively administered neutralizing murine antibodies to HSV-1, some AR129 mice survived infection with up to104PFU of HSV-1. This acute immune response was dependent on the presence of interleukin-12 (IL-12) p75. Interestingly, some virus-infected mice stayed healthy for several months, at which time antibody to HSV-1 was no longer detectable. Treatment of these virus-exposed mice with dexamethasone led to death in approximately 40% of the mice. HSV-1 was found in brains of mice that did not survive dexamethasone treatment, whereas HSV-1 was absent in those that survived the treatment. We conclude that in the presence of passively administered HSV-1-specific antibodies, the IL-12-induced IFN-γ-dependent innate immune response is able to control low doses of virus infection. Surprisingly, in a significant proportion of these mice, HSV-1 appears to persist in the absence of antibodies and specific immunity.


2000 ◽  
Vol 81 (9) ◽  
pp. 2215-2218 ◽  
Author(s):  
Mary Jane Nicholl ◽  
Laurence H. Robinson ◽  
Chris M. Preston

Previous studies have shown that infection of human fibroblasts with human cytomegalovirus (HCMV) results in activation of cellular interferon-responsive gene expression. We demonstrate here that infection of human fibroblasts with herpes simplex virus type 1 (HSV-1) in the absence of de novo protein synthesis also induces the expression of interferon-responsive genes. Five genes tested (encoding ISG54, IFI56, ISG15, 9-27 and MxA) were activated by infection with HSV-1, although the degree of response varied between the individual genes. HSV-1 was a less efficient inducer than HCMV. The effect was a consequence of binding of the virus particle to the cell surface or of the presence of virion components within the infected cell. Induction was mediated by a pathway other than the mechanism through which interferon-α mediates its effects on cellular gene expression.


2007 ◽  
Vol 81 (21) ◽  
pp. 11781-11789 ◽  
Author(s):  
Chris M. Preston

ABSTRACT Model systems have previously been developed in which herpes simplex virus (HSV) is retained in human fibroblasts in a nonreplicating state known as quiescence. The HSV type 1 (HSV-1) immediate-early (IE) protein ICP0, an important activator of gene expression, reactivates the quiescent genome and promotes the resumption of virus replication. Previous studies reported that infection with ICP0-null HSV-1 mutants fails to reactivate quiescent HSV, even when the mutant itself undergoes productive replication, leading to the hypothesis that quiescent genomes exist in a silent configuration in which they are shielded from trans-acting factors. I reinvestigated these findings, using HSV-1 mutants with lesions in the transcription activators VP16, ICP0, and ICP4 to establish quiescent infection at high efficiency. Superinfection with ICP0-null HSV-1 mutants at a low multiplicity of infection (MOI), so that individual plaques were formed, reactivated expression from the quiescent genome, demonstrating that the requirement for ICP0 is not absolute. The previously reported failure to observe reactivation by ICP0-null mutants was shown to be a consequence of either a low initial MOI or a high superinfecting MOI. Competition between viral genomes at the level of gene expression and virus replication, especially when ICP0 was absent, was demonstrated during reactivation and also during normal infection of human fibroblasts. The results show that the multiplicity-dependent phenotype of ICP0-null mutants limits the efficiency of reactivation at low MOIs and that competition between genomes occurs at high MOIs. The conclusion that quiescent HSV genomes are extensively silenced and intrinsically insensitive to trans-acting factors must be reevaluated.


2005 ◽  
Vol 79 (1) ◽  
pp. 525-535 ◽  
Author(s):  
Chris M. Preston ◽  
Mary Jane Nicholl

ABSTRACT The human cytomegalovirus tegument protein pp71 is important for transactivation of immediate-early (IE) gene expression and for the efficient initiation of virus replication. We have analyzed the properties of pp71 by assaying its effects on gene expression from the genome of in1312, a herpes simplex virus type 1 (HSV-1) mutant devoid of functional VP16, ICP0, and ICP4. Upon infection of human fibroblasts, in1312-derived viruses are repressed and retained in a quiescent state, but the presence of pp71 prevented the quiescent state from being attained. Reporter gene cassettes cloned into the in1312 genome, in addition to the endogenous IE promoters, remained active for at least 12 days postinfection, and infected cells were viable and morphologically normal. Cells expressing pp71 remained responsive to the HSV-1 transactivating factors VP16 and ICP4 and to trichostatin A. The C-terminal 61 amino acids, but not the LACSD motif, were required for pp71 activity. In addition to preventing attainment of quiescence, pp71 was able to disrupt the quiescent state of in1312 derivatives and promote the resumption of viral gene expression after a lag of approximately 3 days. The results extend the functional analysis of pp71 and suggest a degree of similarity with the HSV-1 IE protein ICP0. The ability to provoke slow reactivation of quiescent genomes, in conjunction with cell survival, represents a novel property for a viral structural protein.


2008 ◽  
Vol 82 (23) ◽  
pp. 11775-11783 ◽  
Author(s):  
Chris M. Preston ◽  
Mary Jane Nicholl

ABSTRACT Herpes simplex virus type 1 (HSV-1) mutants impaired in the activities of the structural protein VP16 and the immediate-early (IE) proteins ICP0 and ICP4 establish a quiescent infection in human fibroblasts, with most cells retaining an inactive, repressed viral genome for sustained periods in culture. To date, the quiescent state has been considered stable, since it has been reversed only by provision of herpesviral proteins, such as ICP0, not by alteration of the cell physiological state. We report that the interaction of HSV-1 with human fibroblasts can be altered significantly by transient treatment of cultures with sodium arsenite, an inducer of heat shock and oxidative stress, or gramicidin D, a toxin that selectively permeabilizes cell membranes, prior to infection. These regimens stimulated gene expression from IE-deficient HSV-1 mutants in a promoter sequence-independent manner and also overcame the replication defect of ICP0-null mutants. Reactivation of gene expression from quiescent HSV-1 genomes and the resumption of virus replication were observed following addition of arsenite or gramicidin D to cultures. Both agents induced reorganization of nuclear domain 10 structures, the sites of quiescent genomes, but appeared to do so through different mechanisms. The results demonstrate that the physiological state of the cell is important in determining the outcome of infection with IE-deficient HSV-1 and show novel methods for reactivating quiescent HSV-1 in fibroblasts with a high efficiency.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David Shahnazaryan ◽  
Rana Khalil ◽  
Claire Wynne ◽  
Caroline A. Jefferies ◽  
Joan Ní Gabhann-Dromgoole ◽  
...  

AbstractHerpes simplex keratitis (HSK), caused by herpes simplex virus type 1 (HSV-1) infection, is the commonest cause of infectious blindness in the developed world. Following infection the virus is initially suspended in the tear film, where it encounters a multi-pronged immune response comprising enzymes, complement, immunoglobulins and crucially, a range of anti-viral and pro-inflammatory cytokines. However, given that HSV-1 can overcome innate immune responses to establish lifelong latency throughout a susceptible individual’s lifetime, there is significant interest in understanding the mechanisms employed by HSV-1 to downregulate the anti-viral type I interferon (IFN) mediated immune responses. This study aimed to investigate the interactions between infected cell protein (ICP)0 and key elements of the IFN pathway to identify possible novel targets that contribute to viral immune evasion. Reporter gene assays demonstrated the ability of ICP0 to inhibit type I IFN activity downstream of pathogen recognition receptors (PRRs) which are known to be involved in host antiviral defences. Further experiments identified interferon regulatory factor (IRF)7, a driver of type I IFN, as a potential target for ICP0. These findings increase our understanding of the pathogenesis of HSK and suggest IRF7 as a potential therapeutic target.


2009 ◽  
Vol 83 (23) ◽  
pp. 12399-12406 ◽  
Author(s):  
Vineet D. Menachery ◽  
David A. Leib

ABSTRACT The type I interferon (IFN) cascade is critical in controlling viral replication and pathogenesis. Recognition pathways triggered by viral infection rapidly induce the type I IFN cascade, often in an IFN regulatory factor 3 (IRF-3)-dependent fashion. This dependence predicts that loss of IRF-3 would render early recognition pathways inoperative and thereby impact virus replication, but this has not been observed previously with herpes simplex virus type 1 (HSV-1) in vitro. In this study, HSV-1-infected IRF-3−/− bone marrow-derived dendritic cells (BMDCs) and macrophages supported increased HSV replication compared to control cells. In addition, IRF-3-deficient BMDCs exhibited delayed type I IFN synthesis compared to control cells. However, while IFN pretreatment of IRF-3−/− BMDCs resulted in reduced virus titers, a far greater reduction was seen after IFN treatment of wild-type cells. This suggests that even in the presence of exogenously supplied IFN, IRF-3−/− BMDCs are inherently defective in the control of HSV-1 replication. Together, these results demonstrate a critical role for IRF-3-mediated pathways in controlling HSV-1 replication in cells of the murine immune system.


2021 ◽  
Vol 21 ◽  
Author(s):  
Xinwei Huang ◽  
Xiuqing Li ◽  
Lijuan Yang ◽  
Pengfei Wang ◽  
Jingyuan Yan ◽  
...  

Aims: We aim to define parameters affecting the safety and long-term transgene expression of attenuated HSV-1 vectors and optimize the expression cassettes to achieve robust and sustained expression in CNS. Background: Engineered, attenuated Herpes simplex virus (HSV) vectors are promising vehicles for gene delivery to the peripheral and central nervous systems. The virus latent promoter (LAP) is commonly used to drive exogenous gene expression; however, parameters affecting the safety and long-term transgene expression of attenuated HSV-1 vectors have not been fully understood. Objective: This study aimed to construct attenuated HSV-1 vectors using the CRISPR-Cas9 system and examine the influence of transgene cassette construction and insertion site on transgene expression and vector safety. Method: In this study, we used a CRISPR-Cas9 system to accurately and efficiently edit attenuated HSV-1 strain 1716, and constructed two series of recombinant virus LMR and LMRx with different sets of gene cassettes insertion in Exon1(LAP2) and 2.0 kb intron downstream of LAP, respectively. The transgene expression and viral gene transcriptional kinetics were compared in in-vitro cell lines. The reporter gene expression and safety profiles of each vector were further evaluated in the mouse hippocampus gene transduction model. Result: The in-vitro cell line analysis indicated that the insertion of a gene expression cassette would disrupt virus gene transcription. Mouse hippocampus transducing analysis suggested that complete expression cassette insertion at 2.0 kb intron could achieve robust and longtime gene expression than the other constructs. Recombinants with gene expression cassettes lacked Poly (A), which induced significant neuronal inflammation due to persistent viral antigen expression and microglia activation. Conclusion: Our results indicated that the integrity of LAT transcripts was not necessary for the establishment of long-term latent expression. Exogenous strong promoters (like cBh promoter) could remain active during latency when placed in Exon1 or 2.0 Kb Intron of LAT locus, although their transcriptional activity declined with time. Consistent with previous research, the foreign gene expression would last much longer when the gene cassette was located downstream of Exon1, which suggested a role of LAP2 in maintaining promoter activity during latency. Besides, over-transcription of the downstream part of LAT may induce continuous activation of the attenuated vectors, suggesting an important role of LAT in maintaining viral reactivation potential.


Sign in / Sign up

Export Citation Format

Share Document