Attenuation of Getah virus by a single amino acid substitution at residue 253 of the E2 protein that might be part of a new heparan sulfate binding site on alphaviruses

2022 ◽  
Author(s):  
Ningning Wang ◽  
Xiaofeng Zhai ◽  
Xiaoling Li ◽  
Yu Wang ◽  
Wan-ting He ◽  
...  

The emergence of new epidemic variants of alphaviruses poses a public health risk. It is associated with adaptive mutations that often cause increased pathogenicity. Getah virus (GETV), a neglected and re-emerging mosquito-borne alphavirus, poses threat to many domestic animals and probably even humans. At present, the underlying mechanisms of GETV pathogenesis are not well defined. We identified a residue in the E2 glycoprotein that is critical for viral adsorption to cultured cells and pathogenesis in vivo . Viruses containing an arginine instead of a lysine at residue 253 displayed enhanced infectivity in mammalian cells and diminished virulence in a mouse model of GETV disease. Experiments in cell culture show that heparan sulfate (HS) is a new attachment factor for GETV, and the exchange Lys253Arg improves virus attachment by enhancing binding to HS. The mutation also results in more effective binding to glycosaminoglycan (GAG), linked to low virulence due to rapid virus clearance from the circulation. Localization of residue 253 in the 3D structure of the spike revealed several other basic residues in E2 and E1 in close vicinity that might constitute an HS-binding site different from sites previously identified in other alphaviruses. Overall, our study reveals that HS acts as the attachment factor of GETV and provides convincing evidence for an HS-binding determinant at residue 253 in the E2 glycoprotein of GETV, which contributes to infectivity and virulence. IMPORTANCE Due to decades of inadequate monitoring and lack of vaccines and specific treatment, a large number of people have been infected with alphaviruses. GETV is a re-emerging alphavirus that has the potential to infect humans. This specificity of the GETV disease, particularly its propensity for chronic musculoskeletal manifestations, underscores the need to identify the genetic determinants that govern GETV virulence in the host. Using a mouse model, we show that a single amino acid substitution at residue 253 in the E2 glycoprotein causes attenuation of the virus. Residue 253 might be part of a binding site for HS, a ubiquitous attachment factor on the cell surface. The substitution of Lys by Arg improves cell attachment of the virus in vitro and virus clearance from the blood in vivo by enhancing binding to HS. In summary, we have identified HS as a new attachment factor for GETV and the corresponding binding site in the E2 protein for the first time. Our research potentially improved understanding of the pathogenic mechanism of GETV and provided a potential target for the development of new attenuated vaccines and antiviral drugs.

2000 ◽  
Vol 74 (24) ◽  
pp. 11849-11857 ◽  
Author(s):  
Jason P. Gardner ◽  
Ilya Frolov ◽  
Silvia Perri ◽  
Yaying Ji ◽  
Mary Lee MacKichan ◽  
...  

ABSTRACT The ability to target antigen-presenting cells with vectors encoding desired antigens holds the promise of potent prophylactic and therapeutic vaccines for infectious diseases and cancer. Toward this goal, we derived variants of the prototype alphavirus, Sindbis virus (SIN), with differential abilities to infect human dendritic cells. Cloning and sequencing of the SIN variant genomes revealed that the genetic determinant for human dendritic cell (DC) tropism mapped to a single amino acid substitution at residue 160 of the envelope glycoprotein E2. Packaging of SIN replicon vectors with the E2 glycoprotein from a DC-tropic variant conferred a similar ability to efficiently infect immature human DC, whereupon those DC were observed to undergo rapid activation and maturation. The SIN replicon particles infected skin-resident mouse DC in vivo, which subsequently migrated to the draining lymph nodes and upregulated cell surface expression of major histocompatibility complex and costimulatory molecules. Furthermore, SIN replicon particles encoding human immunodeficiency virus type 1 p55Gag elicited robust Gag-specific T-cell responses in vitro and in vivo, demonstrating that infected DC maintained their ability to process and present replicon-encoded antigen. Interestingly, human and mouse DC were differentially infected by selected SIN variants, suggesting differences in receptor expression between human and murine DC. Taken together, these data illustrate the tremendous potential of using a directed approach in generating alphavirus vaccine vectors that target and activate antigen-presenting cells, resulting in robust antigen-specific immune responses.


2001 ◽  
Vol 75 (14) ◽  
pp. 6303-6309 ◽  
Author(s):  
Marintha L. Heil ◽  
Alison Albee ◽  
James H. Strauss ◽  
Richard J. Kuhn

ABSTRACT Passage of Ross River virus strain NB5092 in avian cells has been previously shown to select for virus variants that have enhanced replication in these cells. Sequencing of these variants identified two independent sites that might be responsible for the phenotype. We now demonstrate, using a molecular cDNA clone of the wild-type T48 strain, that an amino acid substitution at residue 218 in the E2 glycoprotein can account for the phenotype. Substitutions that replaced the wild-type asparagine with basic residues had enhanced replication in avian cells while acidic or neutral residues had little or no observable effect. Ross River virus mutants that had increased replication in avian cells also grew better in BHK cells than the wild-type virus, whereas the remaining mutants were unaffected in growth. Replication in both BHK and avian cells of Ross River virus mutants N218K and N218R was inhibited by the presence of heparin or by the pretreatment of the cells with heparinase. Binding of the mutants, but not of the wild type, to a heparin-Sepharose column produced binding comparable to that of Sindbis virus, which has previously been shown to bind heparin. Replication of these mutants was also adversely affected when they were grown in a CHO cell line that was deficient in heparan sulfate production. These results demonstrate that amino acid 218 of the E2 glycoprotein can be modified to create an heparan sulfate binding site and this modification expands the host range of Ross River virus in cultured cells to cells of avian origin.


2013 ◽  
Vol 57 (4) ◽  
pp. 1677-1684 ◽  
Author(s):  
Phillip J. Yates ◽  
Nalini Mehta ◽  
Joseph Horton ◽  
Margaret Tisdale

ABSTRACTA zanamivir postapproval efficacy study was conducted in children (n= 279) in Japan during three influenza seasons. Pharyngeal swab specimens (n= 714) were obtained for detailed resistance analysis. From 371 cultured viruses, 3 viruses (A/H1N1) from two subjects showed reduced susceptibility to zanamivir at day 1 (before treatment), 1 had an N74S amino acid substitution (fold shift, 46), and 2 (day 1 and day 2) had a Q136K amino acid substitution (fold shifts, 292 and 301). Q136K was detected only in cultured virus and not in the swab. From the remaining 118 cultured viruses obtained during or after treatment with zanamivir, no shifts in virus susceptibility were detected. Neuraminidase (NA) population sequencing showed that viruses from 12 subjects had emergent amino acid substitutions, but 3 with susceptibility data were not zanamivir resistant. The remainder may be natural variants. Further analysis is planned. Hemagglutinin (HA) sequencing showed that viruses from 20 subjects had 9 HA amino acid substitutions that were previously implicated in resistance to neuraminidase inhibitors inin vitroassays or that were close to the receptor binding site. Their role inin vivoresistance appears to be less important but is not well understood. NA clonal sequence analysis was undertaken to determine if minority species of resistant viruses were present. A total of 1,682 clones from 90 subjects were analyzed. Single clones from 12 subjects contained amino acid substitutions close to the NA active site. It is unclear whether these single amino acid substitutions could have been amplified after drug pressure or are just chance mutations introduced during PCR.


2015 ◽  
Vol 112 (41) ◽  
pp. 12586-12591 ◽  
Author(s):  
Aleš Buček ◽  
Petra Matoušková ◽  
Heiko Vogel ◽  
Petr Šebesta ◽  
Ullrich Jahn ◽  
...  

For sexual communication, moths primarily use blends of fatty acid derivatives containing one or more double bonds in various positions and configurations, called sex pheromones (SPs). To study the molecular basis of novel SP component (SPC) acquisition, we used the tobacco hornworm (Manduca sexta), which uses a blend of mono-, di-, and uncommon triunsaturated fatty acid (3UFA) derivatives as SP. We identified pheromone-biosynthetic fatty acid desaturases (FADs) MsexD3, MsexD5, and MsexD6 abundantly expressed in the M. sexta female pheromone gland. Their functional characterization and in vivo application of FAD substrates indicated that MsexD3 and MsexD5 biosynthesize 3UFAs via E/Z14 desaturation from diunsaturated fatty acids produced by previously characterized Z11-desaturase/conjugase MsexD2. Site-directed mutagenesis of sequentially highly similar MsexD3 and MsexD2 demonstrated that swapping of a single amino acid in the fatty acyl substrate binding tunnel introduces E/Z14-desaturase specificity to mutated MsexD2. Reconstruction of FAD gene phylogeny indicates that MsexD3 was recruited for biosynthesis of 3UFA SPCs in M. sexta lineage via gene duplication and neofunctionalization, whereas MsexD5 representing an alternative 3UFA-producing FAD has been acquired via activation of a presumably inactive ancestral MsexD5. Our results demonstrate that a change as small as a single amino acid substitution in a FAD enzyme might result in the acquisition of new SP compounds.


Sign in / Sign up

Export Citation Format

Share Document