scholarly journals Human Cytomegalovirus Decreases Major Histocompatibility Complex Class II by Regulating Class II Transactivator Transcript Levels in a Myeloid Cell Line

2020 ◽  
Vol 94 (7) ◽  
Author(s):  
Praneet K. Sandhu ◽  
Nicholas J. Buchkovich

ABSTRACT Human cytomegalovirus (HCMV) is a ubiquitous pathogen that encodes many proteins to modulate the host immune response. Extensive efforts have led to the elucidation of multiple strategies employed by HCMV to effectively block NK cell targeting of virus-infected cells and the major histocompatibility complex (MHC) class I-primed CD8+ T cell response. However, viral regulation of the MHC class II-mediated CD4+ T cell response is understudied in endogenous MHC class II-expressing cells, largely because the popular cell culture systems utilized for studying HCMV do not endogenously express MHC class II. Of the many cell types infected by HCMV in the host, myeloid cells, such as monocytes, are of particular importance due to their role in latency and subsequent dissemination throughout the host. We investigated the impact of HCMV infection on MHC class II in Kasumi-3 cells, a myeloid-progenitor cell line that endogenously expresses the MHC class II gene, HLA-DR. We observed a significant reduction in the expression of surface and total HLA-DR at 72 h postinfection (hpi) and 120 hpi in infected cells. The decrease in HLA-DR expression was independent of the expression of previously described viral genes that regulate the MHC class II complex or the unique short (US) region of HCMV, a region expressing many immunomodulatory genes. The altered surface level of HLA-DR was not a result of increased endocytosis and degradation but was a result of a reduction in HLA-DR transcripts due to a decrease in the expression of the class II transactivator (CIITA). IMPORTANCE Human cytomegalovirus (HCMV) is an opportunistic herpesvirus that is asymptomatic for healthy individuals but that can lead to severe pathology in patients with congenital infections and immunosuppressed patients. Thus, it is important to understand the modulation of the immune response by HCMV, which is understudied in the context of endogenous MHC class II regulation. Using Kasumi-3 cells as a myeloid progenitor cell model endogenously expressing MHC class II (HLA-DR), this study shows that HCMV decreases the expression of HLA-DR in infected cells by reducing the transcription of HLA-DR transcripts early during infection independently of the expression of previously implicated genes. This is an important finding, as it highlights a mechanism of immune evasion utilized by HCMV to decrease the expression of MHC class II in a relevant cell system that endogenously expresses the MHC class II complex.

1997 ◽  
Vol 185 (11) ◽  
pp. 1885-1895 ◽  
Author(s):  
John Douhan ◽  
Rebecca Lieberson ◽  
Joan H.M. Knoll ◽  
Hong Zhou ◽  
Laurie H. Glimcher

Patients with one type of major histocompatibility complex class II combined immunodeficiency have mutations in a gene termed class II transactivator (CIITA), which coordinately controls the transcription of the three major human class II genes, HLA-DR, -DQ, and -DP. However, the experimentally derived B-lymphoblastoid cell line, clone 13, expresses high levels of HLADQ in the absence of HLA-DR and HLA-DP, despite its mapping by complementation analysis to this group. It was possible that one of the clone 13 CIITA alleles bore a mutation that allowed HLA-DQ, but not HLA-DR or -DP transcription. Alternatively, another factor, distinct from CIITA, might control HLA-DQ expression. We report here that ectopic expression of CIITA cDNAs derived by reverse transcriptase polymerase chain reaction from clone 13 do not restore expression of HLA-DQ in another CIITA-deficient cell line, RJ2.2.5. In addition, no CIITA protein is detectable in clone 13 nuclear extracts. In contrast, somatic cell fusion between clone 13 and RJ2.2.5 restored expression of the HLA-DQ haplotype encoded by the RJ2.2.5 DQB gene. Taken together, these data demonstrate the existence of an HLA-DQ isotype-specific trans-acting factor, which functions independently of CIITA.


2010 ◽  
Vol 78 (12) ◽  
pp. 5138-5150 ◽  
Author(s):  
Holger Rüssmann ◽  
Klaus Panthel ◽  
Brigitte Köhn ◽  
Stefan Jellbauer ◽  
Sebastian E. Winter ◽  
...  

ABSTRACT Extracellular Yersinia pseudotuberculosis employs a type III secretion system (T3SS) for translocating virulence factors (Yersinia outer proteins [Yops]) directly into the cytosol of eukaryotic cells. Recently, we used YopE as a carrier molecule for T3SS-dependent secretion and translocation of listeriolysin O (LLO) from Listeria monocytogenes. We demonstrated that translocation of chimeric YopE/LLO into the cytosol of macrophages by Yersinia results in the induction of a codominant antigen-specific CD4 and CD8 T-cell response in orally immunized mice. In this study, we addressed the requirements for processing and major histocompatibility complex (MHC) class II presentation of chimeric YopE proteins translocated into the cytosol of macrophages by the Yersinia T3SS. Our data demonstrate the ability of Yersinia to counteract exogenous MHC class II antigen presentation of secreted hybrid YopE by the action of wild-type YopE and YopH. In the absence of exogenous MHC class II antigen presentation, an alternative pathway was identified for YopE fusion proteins originating in the cytosol. This endogenous antigen-processing pathway was sensitive to inhibitors of phagolysosomal acidification and macroautophagy, but it did not require the function either of the proteasome or of transporters associated with antigen processing. Thus, by an autophagy-dependent mechanism, macrophages are able to compensate for the YopE/YopH-mediated inhibition of the endosomal MHC class II antigen presentation pathway for exogenous antigens. This is the first report demonstrating that autophagy might enable the host to mount an MHC class II-restricted CD4 T-cell response against translocated bacterial virulence factors. We provide critical new insights into the interaction between the mammalian immune system and a human pathogen.


1995 ◽  
Vol 182 (5) ◽  
pp. 1517-1525 ◽  
Author(s):  
H T Lu ◽  
J L Riley ◽  
G T Babcock ◽  
M Huston ◽  
G R Stark ◽  
...  

Interferon (IFN) gamma, a cardinal proinflammatory cytokine, induces expression of the gene products of the class II locus of the major histocompatibility complex (MHC), whereas IFN-alpha or -beta suppresses MHC class II expression. The mechanism of IFN-beta-mediated MHC class II inhibition has been unclear. Recently, a novel factor termed class II transactivator (CIITA) has been identified as essential for IFN-gamma-induced MHC class II transcription. We studied the status of IFN-gamma-induced CIITA messenger RNA (mRNA) accumulation and CIITA-driven transactivation in IFN-beta-treated cells and used cell lines that had defined defects in the type I IFN response pathway to address the roles of IFN signaling components in the inhibition of MHC class II induction. IFN-beta treatment did not suppress IFN-gamma-induced accumulation of CIITA mRNA. After cells were stably transfected with CIITA, endogenous MHC class II genes were constitutively expressed, and MHC class II promoters, delivered by transfection, were actively transcribed in CIITA-expressing cells. Expression of these promoters was significantly impaired by pretreatment with IFN-beta. These results suggest that IFN-beta acts downstream of CIITA mRNA accumulation, and acts in part by reducing the functional competence of CIITA for transactivating MHC class II promoters. IFN stimulated gene factor 3 (ISGF3) gamma was essential for IFN-beta to mediate inhibition of MHC class II induction, regardless of whether MHC class II transcription was stimulated by IFN-gamma or directly by CIITA expression. Results of these experiments suggest that inhibition of MHC class II in IFN-beta-treated cells requires expression of gene(s) directed by the ISGF3-IFN-stimulated response element pathway, and that these gene product(s) may act by blocking CIITA-driven transcription of MHC class II promoters.


1996 ◽  
Vol 184 (6) ◽  
pp. 2153-2166 ◽  
Author(s):  
Lisa K. Denzin ◽  
Craig Hammond ◽  
Peter Cresswell

Major histocompatibility complex (MHC) class II–positive cell lines which lack HLA-DM expression accumulate class II molecules associated with residual invariant (I) chain fragments (class II–associated invariant chain peptides [CLIP]). In vitro, HLA-DM catalyzes CLIP dissociation from class II–CLIP complexes, promoting binding of antigenic peptides. Here the physical interaction of HLA-DM with HLA-DR molecules was investigated. HLA-DM complexes with class II molecules were detectable transiently in cells, peaking at the time when the class II molecules entered the MHC class II compartment. HLA-DR αβ dimers newly released from I chain, and those associated with I chain fragments, were found to associate with HLA-DM in vivo. Mature, peptide-loaded DR molecules also associated at a low level. These same species, but not DR-I chain complexes, were also shown to bind to purified HLA-DM molecules in vitro. HLA-DM interaction was quantitatively superior with DR molecules isolated in association with CLIP. DM-DR complexes generated by incubating HLA-DM with purified DR αβCLIP contained virtually no associated CLIP, suggesting that this superior interaction reflects a prolonged HLA-DM association with empty class II dimers after CLIP dissociation. Incubation of peptide-free αβ dimers in the presence of HLA-DM was found to prolong their ability to bind subsequently added antigenic peptides. Stabilization of empty class II molecules may be an important property of HLA-DM in facilitating antigen processing.


1990 ◽  
Vol 172 (3) ◽  
pp. 709-717 ◽  
Author(s):  
A Herman ◽  
G Croteau ◽  
R P Sekaly ◽  
J Kappler ◽  
P Marrack

Staphylococcal enterotoxins (SEs) have been shown to bind to major histocompatibility complex (MHC) class II proteins and stimulate T cells in a V beta-specific manner, and these V beta specificities for various SEs have been well documented in mice and humans. This study was undertaken in order to examine the ability of human class II molecules to present SEs to human and murine T cell hybridomas. Using a panel of transfectants expressing individual HLA class II antigens, we have shown that HLA-DR alleles differ in their ability to bind and present SEs. Since the HLA-DR proteins share a common alpha chain, these results indicate that the polymorphic beta chain plays an important role in SE binding and presentation to T cells. In addition, we have shown that human class II isotypes markedly differ in their ability to present SEs. The results of this study should provide information on the region of MHC class II molecules that interacts with foreign, and perhaps self, super-antigens.


1999 ◽  
Vol 73 (8) ◽  
pp. 6582-6589 ◽  
Author(s):  
Emmanuelle Le Roy ◽  
Annick Mühlethaler-Mottet ◽  
Christian Davrinche ◽  
Bernard Mach ◽  
Jean-Luc Davignon

ABSTRACT Human cytomegalovirus (HCMV), a betaherpesvirus, is a pathogen which escapes immune recognition through various mechanisms. In this paper, we show that HCMV down regulates gamma interferon (IFN-γ)-induced HLA-DR expression in U373 MG astrocytoma cells due to a defect downstream of STAT1 phosphorylation and nuclear translocation. Repression of class II transactivator (CIITA) mRNA expression is detected within the first hours of IFN-γ–HCMV coincubation and results in the absence of HLA-DR synthesis. This defect leads to the absence of presentation of the major immediate-early protein IE1 to specific CD4+ T-cell clones when U373 MG cells, used as antigen-presenting cells, are treated with IFN-γ plus HCMV. However, presentation of endogenously synthesized IE1 can be restored when U373 MG cells are transfected with CIITA prior to infection with HCMV. Altogether, the data indicate that the defect induced by HCMV resides in the activation of the IFN-γ-responsive promoter of CIITA. This is the first demonstration of a viral inhibition of CIITA expression.


1990 ◽  
Vol 10 (3) ◽  
pp. 965-971
Author(s):  
M Kobr ◽  
W Reith ◽  
C Herrero-Sanchez ◽  
B Mach

The regulation of major histocompatibility complex (MHC) class II gene expression is a key feature of the control of normal and abnormal immune responses. In humans, class II alpha - and beta-chain genes are organized in a multigene family with three distinct subregions, HLA-DR, -DQ, and -DP. The regulation of these genes is generally coordinated, and their promoters contain highly conserved motifs, in particular the X and Y boxes. We have identified five distinct proteins that bind to specific DNA sequences within the first 145 base pairs of the HLA-DR promoter, a segment known to be functionally essential for class II gene regulation. Among these, RF-X is of special interest, since mutants affected in the regulation of MHC class II gene expression have a specific defect in RF-X binding. Unexpectedly, RF-X displays a characteristic gradient of binding affinities for the X boxes of three alpha-chain genes (DRA greater than DPA much greater than DQA). The same observation was made with recombinant RF-X. We also describe a novel factor, NF-S, which bound to the spacer region between the X and Y boxes of class II promoters. NF-S exhibited a reverse gradient of affinity compared with RF-X (DQA greater than DPA much greater than DRA). As expected, RF-X bound well to the mouse IE alpha promoter, while NF-S bound well to IA alpha. The drastic differences in the binding of RF-X and NF-S to different MHC class II promoters contrasts with the coordinate regulation of HLA-DR, -DQ, and -DP genes.


1991 ◽  
Vol 173 (3) ◽  
pp. 779-782 ◽  
Author(s):  
Y Chvatchko ◽  
H R MacDonald

Recent studies indicate that both CD4+ and CD8+ T lymphocytes proliferate in vitro in response to Mls-1a-encoded determinants. Using both immunogenetic and antibody blocking approaches we show here that Mls-1a responses of both subsets require expression of major histocompatibility complex (MHC) class II molecules (I-A and/or I-E) by the stimulator cells. Furthermore, CD8+ T cell responses to Mls-1a/class II MHC do not require (and are in fact inhibited by) the presence of functional CD8 molecules. Taken together, our data underscore the dramatic differences between CD8+ T cell responses to conventional peptide antigens as opposed to "superantigens" such as Mls-1a.


2005 ◽  
Vol 73 (2) ◽  
pp. 1044-1051 ◽  
Author(s):  
Takashi Matsuyama ◽  
Toshihisa Kawai ◽  
Yuichi Izumi ◽  
Martin A Taubman

ABSTRACT HLA-DR (major histocompatibility complex [MHC] class II) is often expressed by epithelial cells in gingival tissues with periodontal disease but not by cells in healthy gingival tissues. Confocal microscopic analyses revealed that gingival epithelial cells (GEC) from tissue with periodontal disease express both HLA-DR and B7-1 (CD80) costimulatory molecules. Rat GEC lines were established to elucidate the possible role of MHC class II and B7-1 expression by GEC. Stimulation of a rat GEC line with gamma interferon (IFN-γ) induced the expression of MHC class II, whereas the cell line constitutively expressed B7-1 costimulatory molecules as determined by reverse transcription-PCR and flow cytometry. Actinobacillus actinomycetemcomitans Omp29-specific CD4+ Th1 clone cells proliferated in response to pretreatment of GEC with fixed A. actinomycetemcomitans and IFN-γ. However, the Th1 cells did not respond to pretreatment of GEC with the bacteria alone or IFN-γ alone. The activation of Th1 clone cells induced by the GEC was inhibited by antibody to MHC class II or by CTLA4 immunoglobulin (CTLA4-Ig). Lymph node T cells did not demonstrate superantigen activity to A. actinomycetemcomitans, although both lymph node T cells and Th1 clone cells were sensitive to superantigen activity of staphylococcal enterotoxin A as cultured in the presence of IFN-γ-treated GEC. These results suggested that GEC can take up bacterial antigen and consequently process and present the bacterial antigen to CD4+ T cells by MHC class II in conjunction with B7 costimulation. GEC appeared to play a role in the adaptive immune response by stimulating antigen-specific CD4+ T cells.


Sign in / Sign up

Export Citation Format

Share Document