scholarly journals The GEF1 Proton-Chloride Exchanger Affects Tombusvirus Replication via Regulation of Copper Metabolism in Yeast

2012 ◽  
Vol 87 (3) ◽  
pp. 1800-1810 ◽  
Author(s):  
Zsuzsanna Sasvari ◽  
Nikolay Kovalev ◽  
Peter D. Nagy

ABSTRACTReplication of plus-strand RNA viruses [(+)RNA viruses] is performed by viral replicases, whose function is affected by many cellular factors in infected cells. In this paper, we demonstrate a surprising role for Gef1p proton-chloride exchanger in replication ofTomato bushy stunt virus(TBSV) model (+)RNA virus. A genetic approach revealed that Gef1p, which is the only proton-chloride exchanger inSaccharomyces cerevisiae, is required for TBSV replication in the yeast model host. We also show that thein vitroactivity of the purified tombusvirus replicase fromgef1Δ yeast was low and that thein vitroassembly of the viral replicase in a cell extract was inhibited by the cytosolic fraction obtained fromgef1Δ yeast. Altogether, our data reveal that Gef1p modulates TBSV replication via regulating Cu2+metabolism in the cell. This conclusion is supported by several lines of evidence, including the direct inhibitory effect of Cu2+ions on thein vitroassembly of the viral replicase, on the activity of the viral RNA-dependent RNA polymerase, and an inhibitory effect of deletion ofCCC2copper pump on TBSV replication in yeast, while altered iron metabolism did not reduce TBSV replication. In addition, applying a chloride channel blocker impeded TBSV replication inNicotiana benthamianaprotoplasts or in whole plants. Overall, blocking Gef1p function seems to inhibit TBSV replication through altering Cu2+ion metabolism in the cytosol, which then inhibits the normal functions of the viral replicase.

2015 ◽  
Vol 112 (14) ◽  
pp. E1782-E1791 ◽  
Author(s):  
Kai Xu ◽  
Peter D. Nagy

Intracellular membranes are critical for replication of positive-strand RNA viruses. To dissect the roles of various lipids, we have developed an artificial phosphatidylethanolamine (PE) vesicle-based Tomato bushy stunt virus (TBSV) replication assay. We demonstrate that the in vitro assembled viral replicase complexes (VRCs) in artificial PE vesicles can support a complete cycle of replication and asymmetrical RNA synthesis, which is a hallmark of (+)-strand RNA viruses. Vesicles containing ∼85% PE and ∼15% additional phospholipids are the most efficient, suggesting that TBSV replicates within membrane microdomains enriched for PE. Accordingly, lipidomics analyses show increased PE levels in yeast surrogate host and plant leaves replicating TBSV. In addition, efficient redistribution of PE leads to enrichment of PE at viral replication sites. Expression of the tombusvirus p33 replication protein in the absence of other viral compounds is sufficient to promote intracellular redistribution of PE. Increased PE level due to deletion of PE methyltransferase in yeast enhances replication of TBSV and other viruses, suggesting that abundant PE in subcellular membranes has a proviral function. In summary, various (+)RNA viruses might subvert PE to build membrane-bound VRCs for robust replication in PE-enriched membrane microdomains.


2005 ◽  
Vol 102 (6) ◽  
pp. 1101-1107 ◽  
Author(s):  
Hartmut Vatter ◽  
Michael Zimmermann ◽  
Veronika Tesanovic ◽  
Andreas Raabe ◽  
Lothar Schilling ◽  
...  

Object. The central role of endothelin (ET)—1 in the development of cerebral vasospasm after subarachnoid hemorrhage is indicated by the successful treatment of this vasospasm in several animal models by using selective ETA receptor antagonists. Clazosentan is a selective ETA receptor antagonist that provides for the first time clinical proof that ET-1 is involved in the pathogenesis of cerebral vasospasm. The aim of the present investigation was, therefore, to define the pharmacological properties of clazosentan that affect ETA receptor—mediated contraction in the cerebrovasculature. Methods. Isometric force measurements were performed in rat basilar artery (BA) ring segments with (E+) and without (E−) endothelial function. Concentration effect curves (CECs) were constructed by cumulative application of ET-1 or big ET-1 in the absence or presence of clazosentan (10−9, 10−8, and 10−7 M). The inhibitory potency of clazosentan was determined by the value of the affinity constant (pA2). The CECs for contraction induced by ET-1 and big ET-1 were shifted to the right in the presence of clazosentan in a parallel dose-dependent manner, which indicates competitive antagonism. The pA2 values for ET-1 were 7.8 (E+) and 8.6 (E−) and the corresponding values for big ET-1 were 8.6 (E+) and 8.3 (E−). Conclusions. The present data characterize clazosentan as a potent competitive antagonist of ETA receptor—mediated constriction of the cerebrovasculature by ET-1 and its precursor big ET-1. These functional data may also be used to define an in vitro profile of an ET receptor antagonist with a high probability of clinical efficacy.


2020 ◽  
Vol 49 (2) ◽  
pp. 135-143
Author(s):  
C.H. Li ◽  
M.Y. Du ◽  
K.T. Wang

This study was conducted to assess the effects of 2,4-epibrassionolide (EBR) on mold decay caused by Rhizopus stolonifer and its capability to activate biochemical defense reactions in postharvest peaches. The treatment of EBR at 5 μM possessed the optimum effectiveness on inhibiting the Rhizopus rot in peach fruit among all treatments. The EBR treatment significantly up-regulated the expression levels of a set of defense-related enzymes and PR genes that included PpCHI, PpGns1, PpPAL, PpNPR1, PpPR1 and PpPR4 as well as led to an enhancement for biosynthesis of phenolics and lignins in peaches during the incubation at 20 °C. Interestingly, the EBR-treated peaches exhibited more striking expressions of PR genes and accumulation of antifungal compounds upon inoculation with the pathogen, indicating a priming defense could be activated by EBR. On the other hand, 5 μM EBR exhibited direct toxicity on fungal proliferation of R. stolonifer in vitro. Thus, we concluded that 5 μM EBR inhibited the Rhizopus rot in peach fruit probably by a direct inhibitory effect on pathogen growth and an indirect induction of a priming resistance. These findings provided a potential alternative for control of fungal infection in peaches during the postharvest storage.


2021 ◽  
Vol 87 (10) ◽  
Author(s):  
Xing Han ◽  
Jiao Wang ◽  
Lianna Liu ◽  
Fengying Shen ◽  
Qingfang Meng ◽  
...  

ABSTRACT A group of polyene macrolides mainly composed of two constituents was isolated from the fermentation broth of Streptomyces roseoflavus Men-myco-93-63, which was isolated from soil where potato scabs were repressed naturally. One of these macrolides was roflamycoin, which was first reported in 1968, and the other was a novel compound named Men-myco-A, which had one methylene unit more than roflamycoin. Together, they were designated RM. This group of antibiotics exhibited broad-spectrum antifungal activities in vitro against 17 plant-pathogenic fungi, with 50% effective concentrations (EC50) of 2.05 to 7.09 μg/ml and 90% effective concentrations (EC90) of 4.32 to 54.45 μg/ml, which indicates their potential use in plant disease control. Furthermore, their biosynthetic gene cluster was identified, and the associated biosynthetic assembly line was proposed based on a module and domain analysis of polyketide synthases (PKSs), supported by findings from gene inactivation experiments. IMPORTANCE Streptomyces roseoflavus Men-myco-93-63 is a biocontrol strain that has been studied in our laboratory for many years and exhibits a good inhibitory effect in many crop diseases. Therefore, the identification of antimicrobial metabolites is necessary and our main objective. In this work, chemical, bioinformatic, and molecular biological methods were combined to identify the structures and biosynthesis of the active metabolites. This work provides a new alternative agent for the biological control of plant diseases and is helpful for improving both the properties and yield of the antibiotics via genetic engineering.


2017 ◽  
Vol 85 (4) ◽  
Author(s):  
Jonathan L. Portman ◽  
Qiongying Huang ◽  
Michelle L. Reniere ◽  
Anthony T. Iavarone ◽  
Daniel A. Portnoy

ABSTRACT Cholesterol-dependent cytolysins (CDCs) represent a family of homologous pore-forming proteins secreted by many Gram-positive bacterial pathogens. CDCs mediate membrane binding partly through a conserved C-terminal undecapeptide, which contains a single cysteine residue. While mutational changes to other residues in the undecapeptide typically have severe effects, mutation of the cysteine residue to alanine has minor effects on overall protein function. Thus, the role of this highly conserved reactive cysteine residue remains largely unknown. We report here that the CDC listeriolysin O (LLO), secreted by the facultative intracellular pathogen Listeria monocytogenes, was posttranslationally modified by S-glutathionylation at this conserved cysteine residue and that either endogenously synthesized or exogenously added glutathione was sufficient to form this modification. When recapitulated with purified protein in vitro, this modification completely ablated the activity of LLO, and this inhibitory effect was fully reversible by treatment with reducing agents. A cysteine-to-alanine mutation in LLO rendered the protein completely resistant to inactivation by S-glutathionylation, and a mutant expressing this mutation retained full hemolytic activity. A mutant strain of L. monocytogenes expressing the cysteine-to-alanine variant of LLO was able to infect and replicate within bone marrow-derived macrophages indistinguishably from the wild type in vitro, yet it was attenuated 4- to 6-fold in a competitive murine infection model in vivo. This study suggests that S-glutathionylation may represent a mechanism by which CDC-family proteins are posttranslationally modified and regulated and help explain an evolutionary pressure to retain the highly conserved undecapeptide cysteine.


2019 ◽  
Author(s):  
◽  
Samantha Elizabeth Brady

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Understanding viral RNA structure and how it functions is crucial in elucidating new drug targets. There are many kinds of viruses that utilize RNA as a critical component of their life cycle, such as retroviruses, single-stranded plus or minus sense RNA viruses, and double-stranded RNA viruses. Two viruses that are studied in this thesis are human immunodeficiency virus (HIV), which is a retrovirus, and hepatitis C virus (HCV), which is a single-stranded plus sense RNA virus. It has been previously reported that a human host factor, RNA helicase A (RHA), is packaged into HIV virions by binding to the primer binding site (PBS) segment of the 5'untranslated region in the HIV genomic RNA. We determined RHA is required for efficient reverse transcription prior to capsid uncoating by utilizing cell based and in vitro techniques. It has also been suggested that RHA plays other roles during HIV infection besides reverse transcription. Utilizing NMR, we demonstrated that RHA binds to the monomeric 5'UTR at the bottom of the TAR hairpin, which is different from how it binds during viral packaging. Next, we employed NMR techniques to probe the 3'end of the HCV genome called 3'X. We determined that the 3'X is in structural equilibrium between two states: an open conformation and a closed conformation. These two conformations have been suggested to play a role in minus sense synthesis and viral protein translation, respectively. Taken together, my thesis work has elucidated how many viruses manipulate and utilize their RNA structure to modulate their outcome.


2020 ◽  
Vol 88 (12) ◽  
Author(s):  
Zachary P. Howard ◽  
Anders Omsland

ABSTRACT Coxiella burnetii is a zoonotic bacterial obligate intracellular parasite and the cause of query (Q) fever. During natural infection of female animals, C. burnetii shows tropism for the placenta and is associated with late-term abortion, at which time the pathogen titer in placental tissue can exceed one billion bacteria per gram. During later stages of pregnancy, placental trophoblasts serve as the major source of progesterone, a steroid hormone known to affect the replication of some pathogens. During infection of placenta-derived JEG-3 cells, C. burnetii showed sensitivity to progesterone but not the immediate precursor pregnenolone or estrogen, another major mammalian steroid hormone. Using host cell-free culture, progesterone was determined to have a direct inhibitory effect on C. burnetii replication. Synergy between the inhibitory effect of progesterone and the efflux pump inhibitors verapamil and 1-(1-naphthylmethyl)-piperazine is consistent with a role for efflux pumps in preventing progesterone-mediated inhibition of C. burnetii activity. The sensitivity of C. burnetii to progesterone, but not structurally related molecules, is consistent with the ability of progesterone to influence pathogen replication in progesterone-producing tissues.


1992 ◽  
Vol 263 (6) ◽  
pp. H1880-H1887 ◽  
Author(s):  
R. M. Elias ◽  
J. Eisenhoffer ◽  
M. G. Johnston

Studies with a sheep isolated duct preparation in vivo demonstrated that the route of administration of hemoglobin was important in demonstrating its inhibitory effect on lymphatic pumping. With autologous oxyhemoglobin administered intravenously (final plasma concentration 5 x 10(-5) M), pumping was not inhibited. However, the addition of oxyhemoglobin (5 x 10(-5) M) into the reservoir (lumen of the duct) resulted in > 95% inhibition of pumping. The extraluminal administration of oxyhemoglobin (10(-5) M) to bovine mesenteric lymphatics in vitro resulted in a 40% inhibition of pumping, whereas the introduction of oxyhemoglobin (10(-5) M) into the lumen of the vessels suppressed pumping 95%. In vessels mechanically denuded of endothelium, intraluminal oxyhemoglobin inhibited pumping 50%. These results suggested that oxyhemoglobin depressed pumping through an effect on both smooth muscle and endothelium. Once pumping was inhibited with oxyhemoglobin administration, stimulation of the duct with elevations in transmural pressure restored pumping activity when endothelial cells were present. However, in the absence of endothelium, pumping decreased with increases in distending pressures. We conclude that oxyhemoglobin has a direct inhibitory effect on lymphatic smooth muscle. The ability of oxyhemoglobin to alter the pressure range over which the lymph pump operates appears to be dependent on an intact endothelium.


2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Johanna J. Sjölander ◽  
Agata Tarczykowska ◽  
Cecilia Picazo ◽  
Itziar Cossio ◽  
Itedale Namro Redwan ◽  
...  

ABSTRACT Oxidation of a highly conserved cysteine (Cys) residue located in the kinase activation loop of mitogen-activated protein kinase kinases (MAPKK) inactivates mammalian MKK6. This residue is conserved in the fission yeast Schizosaccharomyces pombe MAPKK Wis1, which belongs to the H2O2-responsive MAPK Sty1 pathway. Here, we show that H2O2 reversibly inactivates Wis1 through this residue (C458) in vitro. We found that C458 is oxidized in vivo and that serine replacement of this residue significantly enhances Wis1 activation upon addition of H2O2. The allosteric MAPKK inhibitor INR119, which binds in a pocket next to the activation loop and C458, prevented the inhibition of Wis1 by H2O2 in vitro and significantly increased Wis1 activation by low levels of H2O2 in vivo. We propose that oxidation of C458 inhibits Wis1 and that INR119 cancels out this inhibitory effect by binding close to this residue. Kinase inhibition through the oxidation of a conserved Cys residue in MKK6 (C196) is thus conserved in the S. pombe MAPKK Wis1.


2019 ◽  
Vol 93 (9) ◽  
Author(s):  
Megan A. Hahn ◽  
Nolwenn M. Dheilly

ABSTRACT The complete genome sequence of an RNA virus was assembled from RNA sequencing of virus particles purified from threespine stickleback intestine tissue samples. This new virus is most closely related to the Eel picornavirus and can be assigned to the genus Potamipivirus in the family Picornaviridae. Its unique genetic properties are enough to establish a new species, dubbed the Threespine Stickleback picornavirus (TSPV). Due to their broad geographic distribution throughout the Northern Hemisphere and parallel adaptation to freshwater, threespine sticklebacks have become a model in evolutionary ecology. Further analysis using diagnostic PCRs revealed that TSPV is highly prevalent in both anadromous and freshwater populations of threespine sticklebacks, infects almost all fish tissues, and is transmitted vertically to offspring obtained from in vitro fertilization in laboratory settings. Finally, TSPV was found in Sequence Reads Archives of transcriptome of Gasterosteus aculeatus, further demonstrating its wide distribution and unsought prevalence in samples. It is thus necessary to test the impact of TSPV on the biology of threespine sticklebacks, as this widespread virus could interfere with the behavioral, physiological, or immunological studies that employ this fish as a model system. IMPORTANCE The threespine stickleback species complex is an important model system in ecological and evolutionary studies because of the large number of isolated divergent populations that are experimentally tractable. For similar reasons, its coevolution with the cestode parasite Schistocephalus solidus, its interaction with gut microbes, and the evolution of its immune system are of growing interest. Herein we describe the discovery of an RNA virus that infects both freshwater and anadromous populations of sticklebacks. We show that the virus is transmitted vertically in laboratory settings and found it in Sequence Reads Archives, suggesting that experiments using sticklebacks were conducted in the presence of the virus. This discovery can serve as a reminder that the presence of viruses in wild-caught animals is possible, even when animals appear healthy. Regarding threespine sticklebacks, the impact of Threespine Stickleback picornavirus (TSPV) on the fish biology should be investigated further to ensure that it does not interfere with experimental results.


Sign in / Sign up

Export Citation Format

Share Document