scholarly journals Hemagglutinin of Influenza A Virus Antagonizes Type I Interferon (IFN) Responses by Inducing Degradation of Type I IFN Receptor 1

2015 ◽  
Vol 90 (5) ◽  
pp. 2403-2417 ◽  
Author(s):  
Chuan Xia ◽  
Madhuvanthi Vijayan ◽  
Curtis J. Pritzl ◽  
Serge Y. Fuchs ◽  
Adrian B. McDermott ◽  
...  

ABSTRACTInfluenza A virus (IAV) employs diverse strategies to circumvent type I interferon (IFN) responses, particularly by inhibiting the synthesis of type I IFNs. However, it is poorly understood if and how IAV regulates the type I IFN receptor (IFNAR)-mediated signaling mode. In this study, we demonstrate that IAV induces the degradation of IFNAR subunit 1 (IFNAR1) to attenuate the type I IFN-induced antiviral signaling pathway. Following infection, the level of IFNAR1 protein, but not mRNA, decreased. Indeed, IFNAR1 was phosphorylated and ubiquitinated by IAV infection, which resulted in IFNAR1 elimination. The transiently overexpressed IFNAR1 displayed antiviral activity by inhibiting virus replication. Importantly, the hemagglutinin (HA) protein of IAV was proved to trigger the ubiquitination of IFNAR1, diminishing the levels of IFNAR1. Further, influenza A viral HA1 subunit, but not HA2 subunit, downregulated IFNAR1. However, viral HA-mediated degradation of IFNAR1 was not caused by the endoplasmic reticulum (ER) stress response. IAV HA robustly reduced cellular sensitivity to type I IFNs, suppressing the activation of STAT1/STAT2 and induction of IFN-stimulated antiviral proteins. Taken together, our findings suggest that IAV HA causes IFNAR1 degradation, which in turn helps the virus escape the powerful innate immune system. Thus, the research elucidated an influenza viral mechanism for eluding the IFNAR signaling pathway, which could provide new insights into the interplay between influenza virus and host innate immunity.IMPORTANCEInfluenza A virus (IAV) infection causes significant morbidity and mortality worldwide and remains a major health concern. When triggered by influenza viral infection, host cells produce type I interferon (IFN) to block viral replication. Although IAV was shown to have diverse strategies to evade this powerful, IFN-mediated antiviral response, it is not well-defined if IAV manipulates the IFN receptor-mediated signaling pathway. Here, we uncovered that influenza viral hemagglutinin (HA) protein causes the degradation of type I IFN receptor subunit 1 (IFNAR1). HA promoted phosphorylation and polyubiquitination of IFNAR1, which facilitated the degradation of this receptor. The HA-mediated elimination of IFNAR1 notably decreased the cells' sensitivities to type I IFNs, as demonstrated by the diminished expression of IFN-induced antiviral genes. This discovery could help us understand how IAV regulates the host innate immune response to create an environment optimized for viral survival in host cells.

mBio ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Kelly M. Shepardson ◽  
Kyle Larson ◽  
Rachelle V. Morton ◽  
Justin R. Prigge ◽  
Edward E. Schmidt ◽  
...  

ABSTRACT Bacterial superinfections are a primary cause of death during influenza pandemics and epidemics. Type I interferon (IFN) signaling contributes to increased susceptibility of mice to bacterial superinfection around day 7 post-influenza A virus (IAV) infection. Here we demonstrate that the reduced susceptibility to methicillin-resistant Staphylococcus aureus (MRSA) at day 3 post-IAV infection, which we previously reported was due to interleukin-13 (IL-13)/IFN-γ responses, is also dependent on type I IFN signaling and its subsequent requirement for protective IL-13 production. We found, through utilization of blocking antibodies, that reduced susceptibility to MRSA at day 3 post-IAV infection was IFN-β dependent, whereas the increased susceptibility at day 7 was IFN-α dependent. IFN-β signaling early in IAV infection was required for MRSA clearance, whereas IFN-α signaling late in infection was not, though it did mediate increased susceptibility to MRSA at that time. Type I IFN receptor (IFNAR) signaling in CD11c + and Ly6G + cells was required for the observed reduced susceptibility at day 3 post-IAV infection. Depletion of Ly6G + cells in mice in which IFNAR signaling was either blocked or deleted indicated that Ly6G + cells were responsible for the IFNAR signaling-dependent susceptibility to MRSA superinfection at day 7 post-IAV infection. Thus, during IAV infection, the temporal differences in type I IFN signaling increased bactericidal activity of both CD11c + and Ly6G + cells at day 3 and reduced effector function of Ly6G + cells at day 7. The temporal differential outcomes induced by IFN-β (day 3) and IFN-α (day 7) signaling through the same IFNAR resulted in differential susceptibility to MRSA at 3 and 7 days post-IAV infection. IMPORTANCE Approximately 114,000 hospitalizations and 40,000 annual deaths in the United States are associated with influenza A virus (IAV) infections. Frequently, these deaths are due to community-acquired Gram-positive bacterial species, many of which show increasing resistance to antibiotic therapy. Severe complications, including parapneumonic empyema and necrotizing pneumonia, can arise, depending on virulence factors expressed by either the virus or bacteria. Unfortunately, we are unable to control the expression of these virulence factors, making host responses a logical target for therapeutic interventions. Moreover, interactions between virus, host, and bacteria that exacerbate IAV-related morbidities and mortalities are largely unknown. Here, we show that type I interferon (IFN) expression can modulate susceptibility to methicillin-resistant Staphylococcus aureus (MRSA) infection, with IFN-β reducing host susceptibility to MRSA infection while IFN-α increases susceptibility. Our data indicate that treatments designed to augment IFN-β and/or inhibit IFN-α production around day 7 post-IAV infection could reduce susceptibility to deadly superinfections.


2020 ◽  
Vol 94 (7) ◽  
Author(s):  
Chuan Xia ◽  
Jennifer J. Wolf ◽  
Chuankai Sun ◽  
Mengqiong Xu ◽  
Caleb J. Studstill ◽  
...  

ABSTRACT Influenza A virus (IAV) utilizes multiple strategies to confront or evade host type I interferon (IFN)-mediated antiviral responses in order to enhance its own propagation within the host. One such strategy is to induce the degradation of type I IFN receptor 1 (IFNAR1) by utilizing viral hemagglutinin (HA). However, the molecular mechanism behind this process is poorly understood. Here, we report that a cellular protein, poly(ADP-ribose) polymerase 1 (PARP1), plays a critical role in mediating IAV HA-induced degradation of IFNAR1. We identified PARP1 as an interacting partner for IAV HA through mass spectrometry analysis. This interaction was confirmed by coimmunoprecipitation analyses. Furthermore, confocal fluorescence microscopy showed altered localization of endogenous PARP1 upon transient IAV HA expression or during IAV infection. Knockdown or inhibition of PARP1 rescued IFNAR1 levels upon IAV infection or HA expression, exemplifying the importance of PARP1 for IAV-induced reduction of IFNAR1. Notably, PARP1 was crucial for the robust replication of IAV, which was associated with regulation of the type I IFN receptor signaling pathway. These results indicate that PARP1 promotes IAV replication by controlling viral HA-induced degradation of host type I IFN receptor. Altogether, these findings provide novel insight into interactions between influenza virus and the host innate immune response and reveal a new function for PARP1 during influenza virus infection. IMPORTANCE Influenza A virus (IAV) infections cause seasonal and pandemic influenza outbreaks, which pose a devastating global health concern. Despite the availability of antivirals against influenza, new IAV strains continue to persist by overcoming the therapeutics. Therefore, much emphasis in the field is placed on identifying new therapeutic targets that can more effectively control influenza. IAV utilizes several tactics to evade host innate immunity, which include the evasion of antiviral type I interferon (IFN) responses. Degradation of type I IFN receptor (IFNAR) is one known method of subversion, but the molecular mechanism for IFNAR downregulation during IAV infection remains unclear. Here, we have found that a host protein, poly(ADP-ribose) polymerase 1 (PARP1), facilitates IFNAR degradation and accelerates IAV replication. The findings reveal a novel cellular target for the potential development of antivirals against influenza, as well as expand our base of knowledge regarding interactions between influenza and the host innate immunity.


2007 ◽  
Vol 81 (18) ◽  
pp. 9790-9800 ◽  
Author(s):  
Nancy A. Jewell ◽  
Negin Vaghefi ◽  
Sara E. Mertz ◽  
Parvis Akter ◽  
R. Stokes Peebles ◽  
...  

ABSTRACTType I interferon (IFN) induction is an immediate response to virus infection, and very high levels of these cytokines are produced when the Toll-like receptors (TLRs) expressed at high levels by plasmacytoid dendritic cells (pDCs) are triggered by viral nucleic acids. Unlike many RNA viruses, respiratory syncytial virus (RSV) does not appear to activate pDCs through their TLRs and it is not clear how this difference affects IFN-α/β induction in vivo. In this study, we investigated type I IFN production triggered by RSV or influenza A virus infection of BALB/c mice and found that while both viruses induced IFN-α/β production by pDCs in vitro, only influenza virus infection could stimulate type I IFN synthesis by pDCs in vivo. In situ hybridization studies demonstrated that the infected respiratory epithelium was a major source of IFN-α/β in response to either infection, but in pDC-depleted animals only type I IFN induction by influenza virus was impaired.


2015 ◽  
Vol 309 (2) ◽  
pp. L158-L167 ◽  
Author(s):  
Benjamin Lee ◽  
Keven M. Robinson ◽  
Kevin J. McHugh ◽  
Erich V. Scheller ◽  
Sivanarayana Mandalapu ◽  
...  

Suppression of type 17 immunity by type I interferon (IFN) during influenza A infection has been shown to enhance susceptibility to secondary bacterial pneumonia. Although this mechanism has been described in coinfection with gram-positive bacteria, it is unclear whether similar mechanisms may impair lung defense against gram-negative infections. Furthermore, precise delineation of the duration of type I IFN-associated susceptibility to bacterial infection remains underexplored. Therefore, we investigated the effects of preceding influenza A virus infection on subsequent challenge with the gram-negative bacteria Escherichia coli or Pseudomonas aeruginosa and the temporal association between IFN expression with susceptibility to Staphylococcus aureus challenge in a mouse model of influenza and bacterial coinfection. Here we demonstrate that preceding influenza A virus led to increased lung E. coli and P. aeruginosa bacterial burden, which was associated with suppression of type 17 immunity and attenuation of antimicrobial peptide expression. Enhanced susceptibility to S. aureus coinfection ceased at day 14 of influenza infection, when influenza-associated type I IFN levels had returned to baseline levels, further suggesting a key role for type I IFN in coinfection pathogenesis. These findings further implicate type I IFN-associated suppression of type 17 immunity and antimicrobial peptide production as a conserved mechanism for enhanced susceptibility to both gram-positive and gram-negative bacterial coinfection during influenza infection.


2008 ◽  
Vol 4 (11) ◽  
pp. e1000196 ◽  
Author(s):  
Eva-K. Pauli ◽  
Mirco Schmolke ◽  
Thorsten Wolff ◽  
Dorothee Viemann ◽  
Johannes Roth ◽  
...  

2013 ◽  
Vol 9 (4) ◽  
pp. e1003256 ◽  
Author(s):  
Julien Pothlichet ◽  
Isabelle Meunier ◽  
Beckley K. Davis ◽  
Jenny P-Y. Ting ◽  
Emil Skamene ◽  
...  

2014 ◽  
Vol 12 (1) ◽  
pp. 29 ◽  
Author(s):  
Andrea Hillesheim ◽  
Carolin Nordhoff ◽  
Yvonne Boergeling ◽  
Stephan Ludwig ◽  
Viktor Wixler

2021 ◽  
Author(s):  
Ee-Hong Tam ◽  
Yen-Chin Liu ◽  
Chian-Huey Woung ◽  
Helene Minyi Liu ◽  
Guan-Hong Wu ◽  
...  

The NS1 protein of the influenza A virus plays a critical role in regulating several biological processes in cells, including the type I interferon (IFN) response. We previously profiled the cellular factors that interact with the NS1 protein of influenza A virus and found that the NS1 protein interacts with proteins involved in RNA splicing/processing, cell cycle regulation, and protein targeting processes, including 14-3-3ε. Since 14-3-3ε plays an important role in RIG-I translocation to MAVS to activate type I IFN expression, the interaction of the NS1 and 14-3-3ε proteins may prevent the RIG-I-mediated IFN response. In this study, we confirmed that the 14-3-3ε protein interacts with the N-terminal domain of the NS1 protein and that the NS1 protein inhibits RIG-I-mediated IFN-β promoter activation in 14-3-3ε-overexpressing cells. In addition, our results showed that knocking down 14-3-3ε can reduce IFN-β expression elicited by influenza A virus and enhance viral replication. Furthermore, we found that threonine in the 49 th amino acid position of the NS1 protein plays a role in the interaction with 14-3-3ε. Influenza A virus expressing C-terminus-truncated NS1 with T49A mutation dramatically increases IFN-β mRNA in infected cells and causes slower replication than that of virus without the T-to-A mutation. Collectively, this study demonstrates that 14-3-3ε is involved in influenza A virus-initiated IFN-β expression and that the interaction of the NS1 protein and 14-3-3ε may be one of the mechanisms for inhibiting type I IFN activation during influenza A virus infection. IMPORTANCE Influenza A virus is an important human pathogen causing severe respiratory disease. The virus has evolved several strategies to dysregulate the innate immune response and facilitate its replication. We demonstrate that the NS1 protein of influenza A virus interacts with the cellular chaperone protein 14-3-3ε, which plays a critical role in RIG-I translocation that induces type I IFN expression, and that NS1 protein prevents RIG-I translocation to mitochondrial membrane. The interaction site for 14-3-3ε is the RNA-binding domain (RBD) of the NS1 protein. Therefore, this research elucidates a novel mechanism by which the NS1 RBD mediates IFN-β suppression to facilitate influenza A viral replication. Additionally, the findings reveal the antiviral role of 14-3-3ε during influenza A virus infection.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Fangyi Zhang ◽  
Xuefeng Lin ◽  
Xiaodong Yang ◽  
Guangjian Lu ◽  
Qunmei Zhang ◽  
...  

Abstract Increasing evidence has indicated that microRNAs (miRNAs) have essential roles in innate immune responses to various viral infections; however, the role of miRNAs in H1N1 influenza A virus (IAV) infection is still unclear. The present study aimed to elucidate the role and mechanism of miRNAs in IAV replication in vitro. Using a microarray assay, we analyzed the expression profiles of miRNAs in peripheral blood from IAV patients. It was found that miR-132-3p was significantly up-regulated in peripheral blood samples from IAV patients. It was also observed that IAV infection up-regulated the expression of miR-132-3p in a dose- and time-dependent manner. Subsequently, we investigated miR-132-3p function and found that up-regulation of miR-132-3p promoted IAV replication, whereas knockdown of miR-132-3p repressed replication. Meanwhile, overexpression of miR-132-3p could inhibit IAV triggered INF-α and INF-β production and IFN-stimulated gene (ISG) expression, including myxovirus protein A (MxA), 2′,5′-oligoadenylate synthetases (OAS), and double-stranded RNA-dependent protein kinase (PKR), while inhibition of miR-132-3p enhanced IAV triggered these effects. Of note, interferon regulatory factor 1 (IRF1), a well-known regulator of the type I IFN response, was identified as a direct target of miR-132-3p during HIN1 IAV infection. Furthermore, knockdown of IRF1 by si-IRF1 reversed the promoting effects of miR-132-3p inhibition on type I IFN response. Taken together, up-regulation of miR-132-3p promotes IAV replication by suppressing type I IFN response through its target gene IRF1, suggesting that miR-132-3p could represent a novel potential therapeutic target of IAV treatment.


Sign in / Sign up

Export Citation Format

Share Document