scholarly journals A Retention Signal Necessary and Sufficient for Endoplasmic Reticulum Localization Maps to the Transmembrane Domain of Hepatitis C Virus Glycoprotein E2

1998 ◽  
Vol 72 (3) ◽  
pp. 2183-2191 ◽  
Author(s):  
Laurence Cocquerel ◽  
Jean-Christophe Meunier ◽  
André Pillez ◽  
Czeslaw Wychowski ◽  
Jean Dubuisson

ABSTRACT The hepatitis C virus (HCV) genome encodes two envelope glycoproteins (E1 and E2). These glycoproteins interact to form a noncovalent heterodimeric complex which is retained in the endoplasmic reticulum (ER). To identify whether E1 and/or E2 contains an ER-targeting signal potentially involved in ER retention of the E1-E2 complex, these proteins were expressed alone and their intracellular localization was studied. Due to misfolding of E1 in the absence of E2, no conclusion on the localization of its native form could be drawn from the expression of E1 alone. E2 expressed in the absence of E1 was shown to be retained in the ER similarly to E1-E2 complex. Chimeric proteins in which E2 domains were exchanged with corresponding domains of a protein normally transported to the plasma membrane (CD4) were constructed to identify the sequence responsible for its ER retention. The transmembrane domain (TMD) of E2 (C-terminal 29 amino acids) was shown to be sufficient for retention of the ectodomain of CD4 in the ER compartment. Replacement of the E2 TMD by the anchor signal of CD4 or a glycosyl phosphatidylinositol (GPI) moiety led to its expression on the cell surface. In addition, replacement of the E2 TMD by the anchor signal of CD4 or a GPI moiety abolished the formation of E1-E2 complexes. Together, these results suggest that, besides having a role as a membrane anchor, the TMD of E2 is involved in both complex formation and intracellular localization.

1999 ◽  
Vol 73 (4) ◽  
pp. 2641-2649 ◽  
Author(s):  
Laurence Cocquerel ◽  
Sandrine Duvet ◽  
Jean-Christophe Meunier ◽  
André Pillez ◽  
René Cacan ◽  
...  

ABSTRACT Hepatitis C virus (HCV) glycoproteins E1 and E2 assemble to form a noncovalent heterodimer which, in the cell, accumulates in the endoplasmic reticulum (ER). Contrary to what is observed for proteins with a KDEL or a KKXX ER-targeting signal, the ER localization of the HCV glycoprotein complex is due to a static retention in this compartment rather than to its retrieval from the cis-Golgi region. A static retention in the ER is also observed when E2 is expressed in the absence of E1 or for a chimeric protein containing the ectodomain of CD4 in fusion with the transmembrane domain (TMD) of E2. Although they do not exclude the presence of an intracellular localization signal in E1, these data do suggest that the TMD of E2 is an ER retention signal for HCV glycoprotein complex. In this study chimeric proteins containing the ectodomain of CD4 or CD8 fused to the C-terminal hydrophobic sequence of E1 were shown to be localized in the ER, indicating that the TMD of E1 is also a signal for ER localization. In addition, these chimeric proteins were not processed by Golgi enzymes, indicating that the TMD of E1 is responsible for true retention in the ER, without recycling through the Golgi apparatus. Together, these data suggest that at least two signals (TMDs of E1 and E2) are involved in ER retention of the HCV glycoprotein complex.


2005 ◽  
Vol 86 (10) ◽  
pp. 2793-2798 ◽  
Author(s):  
Yann Ciczora ◽  
Nathalie Callens ◽  
Claire Montpellier ◽  
Birke Bartosch ◽  
François-Loïc Cosset ◽  
...  

The envelope glycoproteins of Hepatitis C virus (HCV), E1 and E2, form a heterodimer that is retained in the endoplasmic reticulum (ER). The transmembrane (TM) domains play a major role in E1E2 heterodimerization and in ER retention. Two fully conserved charged residues in the middle of the TM domain of E2 (Asp and Arg) are crucial for these functions. Replacement of the Asp residue by a Leu impaired E1E2 heterodimerization, whereas the Arg-to-Leu mutation had a milder effect. Both Asp and Arg residues were shown to contribute to the ER retention function of E2. In addition, the entry function of HCV envelope glycoproteins was affected by these mutations. Together, these data indicate that the charged residues present in the TM domain of E2 play a major role in the biogenesis and the entry function of the E1E2 heterodimer. However, the Asp and Arg residues do not contribute equally to these functions.


1998 ◽  
Vol 90 (1) ◽  
pp. 118-118
Author(s):  
Laurence Cocquerel ◽  
Sandrine Duvet ◽  
Jean-Christophe Meunier ◽  
Amélie Choukhi ◽  
André Pillez ◽  
...  

2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Mun-Teng Wong ◽  
Steve S. Chen

ABSTRACT In this study, we elucidated the mechanism by which human choline kinase-α (hCKα) interacts with nonstructural protein 5A (NS5A) and phosphatidylinositol-4-kinase IIIα (PI4KIIIα), the lipid kinase crucial for maintaining the integrity of virus-induced membranous webs, and modulates hepatitis C virus (HCV) replication. hCKα activity positively modulated phosphatidylinositol-4-phosphate (PI4P) levels in HCV-expressing cells, and hCKα-mediated PI4P accumulation was abolished by AL-9, a PI4KIIIα-specific inhibitor. hCKα colocalized with NS5A and PI4KIIIα or PI4P; NS5A expression increased hCKα and PI4KIIIα colocalization; and hCKα formed a ternary complex with PI4KIIIα and NS5A, supporting the functional interplay of hCKα with PI4KIIIα and NS5A. PI4KIIIα inactivation by AL-9 or hCKα inactivation by CK37, a specific hCKα inhibitor, impaired the endoplasmic reticulum (ER) localization and colocalization of these three molecules. Interestingly, hCKα knockdown or inactivation inhibited PI4KIIIα-NS5A binding. In an in vitro PI4KIIIα activity assay, hCKα activity slightly increased PI4KIIIα basal activity but greatly augmented NS5A-induced PI4KIIIα activity, supporting the essential role of ternary complex formation in robust PI4KIIIα activation. Concurring with the upregulation of PI4P production and viral replication, overexpression of active hCKα-R (but not the D288A mutant) restored PI4KIIIα and NS5A translocation to the ER in hCKα stable knockdown cells. Furthermore, active PI4KIIIα overexpression restored PI4P production, PI4KIIIα and NS5A translocation to the ER, and viral replication in CK37-treated cells. Based on our results, hCKα functions as an indispensable regulator that bridges PI4KIIIα and NS5A and potentiates NS5A-stimulated PI4KIIIα activity, which then facilitates the targeting of the ternary complex to the ER for viral replication. IMPORTANCE The mechanisms by which hCKα activity modulates the transport of the hCKα-NS5A complex to the ER are not understood. In the present study, we investigated how hCKα interacts with PI4KIIIα (a key element that maintains the integrity of the “membranous web” structure) and NS5A to regulate viral replication. We demonstrated that HCV hijacks hCKα to bridge PI4KIIIα and NS5A, forming a ternary complex, which then stimulates PI4KIIIα activity to produce PI4P. Pronounced PI4P synthesis then redirects the translocation of the ternary complex to the ER-derived, PI4P-enriched membrane for assembly of the viral replication complex and viral replication. Our study provides novel insights into the indispensable modulatory role of hCKα in the recruitment of PI4KIIIα to NS5A and in NS5A-stimulated PI4P production and reveals a new perspective for understanding the impact of profound PI4KIIIα activation on the targeting of PI4KIIIα and NS5A to the PI4P-enriched membrane for viral replication complex formation.


2003 ◽  
Vol 77 (9) ◽  
pp. 5401-5414 ◽  
Author(s):  
Maria Dimitrova ◽  
Isabelle Imbert ◽  
Marie Paule Kieny ◽  
Catherine Schuster

ABSTRACT Replication of the hepatitis C virus (HCV) genome has been proposed to take place close to the membrane of the endoplasmic reticulum in membrane-associated replicase complexes, as is the case with several other plus-strand RNA viruses, such as poliovirus and flaviviruses. The most obvious benefits of this property are the possibility of coupling functions residing in different polypeptidic chains and the sequestration of viral proteins and nucleic acids in a distinct cytoplasmic compartment with high local concentrations of viral components. Indeed, HCV nonstructural (NS) proteins were clearly colocalized in association with membranes derived from the endoplasmic reticulum. This observation, together with the demonstration of the existence of several physical interactions between HCV NS proteins, supports the idea of assembly of a highly ordered multisubunit protein complex(es) probably involved in the replication of the viral genome. The objective of this study, therefore, was to examine all potential interactions between HCV NS proteins which could result in the formation of a replication complex(es). We identified several interacting viral partners by using a glutathione S-transferase pull-down assay, by in vitro and ex vivo coimmunoprecipitation experiments in adenovirus-infected Huh-7 cells allowing the expression of HCV NS proteins, and, finally, by using the yeast two-hybrid system. In addition, by confocal laser scanning microscopy, NS proteins were clearly shown to colocalize when expressed together in Huh-7 cells. We have been able to demonstrate the existence of a complex network of interactions implicating all six NS proteins. Our observations confirm previously described associations and identify several novel homo- and heterodimerizations.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 487 ◽  
Author(s):  
Audrey Boyer ◽  
Julie Dreneau ◽  
Amélie Dumans ◽  
Julien Burlaud-Gaillard ◽  
Anne Bull-Maurer ◽  
...  

During Hepatitis C virus (HCV) morphogenesis, the non-structural protein 2 (NS2) brings the envelope proteins 1 and 2 (E1, E2), NS3, and NS5A together to form a complex at the endoplasmic reticulum (ER) membrane, initiating HCV assembly. The nature of the interactions in this complex is unclear, but replication complex and structural proteins have been shown to be associated with cellular membrane structures called detergent-resistant membranes (DRMs). We investigated the role of DRMs in NS2 complex formation, using a lysis buffer combining Triton and n-octyl glucoside, which solubilized both cell membranes and DRMs. When this lysis buffer was used on HCV-infected cells and the resulting lysates were subjected to flotation gradient centrifugation, all viral proteins and DRM-resident proteins were found in soluble protein fractions. Immunoprecipitation assays demonstrated direct protein–protein interactions between NS2 and E2 and E1 proteins, and an association of NS2 with NS3 through DRMs. The well-folded E1E2 complex and NS5A were not associated, instead interacting separately with the NS2-E1-E2-NS3 complex through less stable DRMs. Core was also associated with NS2 and the E1E2 complex through these unstable DRMs. We suggest that DRMs carrying this NS2-E1-E2-NS3-4A-NS5A-core complex may play a central role in HCV assembly initiation, potentially as an assembly platform.


2015 ◽  
Vol 90 (1) ◽  
pp. 254-265 ◽  
Author(s):  
Guanghui Yi ◽  
Yahong Wen ◽  
Chang Shu ◽  
Qingxia Han ◽  
Kouacou V. Konan ◽  
...  

ABSTRACT The cyclic dinucleotide 2′,3′-cGAMP can bind the adaptor protein STING (stimulator of interferon [IFN] genes) to activate the production of type I IFNs and proinflammatory cytokines. We found that cGAMP added to the culture medium could suppress the replication of the hepatitis C virus (HCV) genotype 1b strain Con1 subgenomic replicon in human hepatoma cells. Knockdown of STING expression diminished the inhibitory effect on replicon replication, while overexpression of STING enhanced the inhibitory effects of cGAMP. The addition of cGAMP into 1b/Con1 replicon cells significantly increased the expression of type I IFNs and antiviral interferon-stimulated genes. Unexpectedly, replication of the genotype 2a JFH1 replicon and infectious JFH1 virus was less sensitive to the inhibitory effect of cGAMP than was that of 1b/Con1 replicon. Using chimeric replicons, 2a NS4B was identified to confer resistance to cGAMP. Transient expression of 2a NS4B resulted in a pronounced inhibitory effect on STING-mediated beta IFN (IFN-β) reporter activation compared to that of 1b NS4B. 2a NS4B was found to suppress STING accumulation in a dose-dependent manner. The predicted transmembrane domain of 2a NS4B was required to inhibit STING accumulation. These results demonstrate a novel genotype-specific inhibition of the STING-mediated host antiviral immune response. IMPORTANCE The cyclic dinucleotide cGAMP was found to potently inhibit the replication of HCV genotype 1b Con1 replicon but was less effective for the 2a/JFH1 replicon and infectious JFH1 virus. The predicted transmembrane domain in 2a NS4B was shown to be responsible for the decreased sensitivity to cGAMP. The N terminus of NS4B has been reported to suppress STING-mediated signaling by disrupting the interaction of STING and TBK1 and/or MAVS. We show that 2a/JFH1 NS4B has an additional mechanism to evade STING signaling through suppressing STING accumulation.


2003 ◽  
Vol 77 (2) ◽  
pp. 1578-1583 ◽  
Author(s):  
Zhenming Xu ◽  
Jinah Choi ◽  
Wen Lu ◽  
Jing-hsiung Ou

ABSTRACT Hepatitis C virus (HCV) F protein is a newly discovered HCV gene product that is expressed by translational ribosomal frameshift. Little is known about the biological properties of this protein. By performing pulse-chase labeling experiments, we demonstrate here that the F protein is a labile protein with a half-life of <10 min in Huh7 hepatoma cells and in vitro. The half-life of the F protein could be substantially increased by proteasome inhibitors, suggesting that the rapid degradation of the F protein is mediated by the proteasome pathway. Further immunofluorescence staining and subcellular fractionation experiments indicate that the F protein is primarily associated with the endoplasmic reticulum. This subcellular localization is similar to those of HCV core and NS5A proteins, raising the possibility that the F protein may participate in HCV morphogenesis or replication.


2000 ◽  
Vol 74 (8) ◽  
pp. 3623-3633 ◽  
Author(s):  
Laurence Cocquerel ◽  
Czeslaw Wychowski ◽  
Frederic Minner ◽  
François Penin ◽  
Jean Dubuisson

ABSTRACT For most membrane proteins, the transmembrane domain (TMD) is more than just an anchor to the membrane. The TMDs of hepatitis C virus (HCV) envelope proteins E1 and E2 are extreme examples of the multifunctionality of such membrane-spanning sequences. Indeed, they possess a signal sequence function in their C-terminal half, play a major role in endoplasmic reticulum localization of E1 and E2, and are potentially involved in the assembly of these envelope proteins. These multiple functions are supposed to be essential for the formation of the viral envelope. As for the other viruses of the familyFlaviviridae, these anchor domains are composed of two stretches of hydrophobic residues separated by a short segment containing at least one fully conserved charged residue. Replacement of these charged residues by an alanine in HCV envelope proteins led to an alteration of all of the functions performed by their TMDs, indicating that these functions are tightly linked together. These data suggest that the charged residues of the TMDs of HCV glycoproteins play a key role in the formation of the viral envelope.


Sign in / Sign up

Export Citation Format

Share Document