scholarly journals Adeno-Associated Virus (AAV) Type 5 Rep Protein Cleaves a Unique Terminal Resolution Site Compared with Other AAV Serotypes

1999 ◽  
Vol 73 (5) ◽  
pp. 4293-4298 ◽  
Author(s):  
John A. Chiorini ◽  
Sandra Afione ◽  
Robert M. Kotin

ABSTRACT Adeno-associated virus (AAV) replication depends on two viral components for replication: the AAV nonstructural proteins (Rep) intrans, and inverted terminal repeat (ITR) sequences incis. AAV type 5 (AAV5) is a distinct virus compared to the other cloned AAV serotypes. Whereas the Rep proteins and ITRs of other serotypes are interchangeable and can be used to produce recombinant viral particles of a different serotype, AAV5 Rep proteins cannot cross-complement in the packaging of a genome with an AAV2 ITR. In vitro replication assays indicated that the block occurs at the level of replication instead of at viral assembly. AAV2 and AAV5 Rep binding activities demonstrate similar affinities for either an AAV2 or AAV5 ITR; however, comparison of terminal resolution site (TRS) endonuclease activities showed a difference in specificity for the two DNA sequences. AAV2 Rep78 cleaved only a type 2 ITR DNA sequence, and AAV5 Rep78 cleaved only a type 5 probe efficiently. Mapping of the AAV5 ITR TRS identified a distinct cleavage site (AGTG TGGC) which is absent from the ITRs of other AAV serotypes. Comparison of the TRSs in the AAV2 ITR, the AAV5 ITR, and the AAV chromosome 19 integration locus identified some conserved nucleotides downstream of the cleavage site but little homology upstream.

2006 ◽  
Vol 80 (13) ◽  
pp. 6207-6217 ◽  
Author(s):  
Patrick G. Needham ◽  
John M. Casper ◽  
Vivian Kalman-Maltese ◽  
Kristin Verrill ◽  
John David Dignam ◽  
...  

ABSTRACT Adeno-associated virus (AAV) is a human parvovirus that normally requires a helper virus such as adenovirus (Ad) for replication. The four AAV replication proteins (Rep78, Rep68, Rep52, and Rep40) are pleiotropic effectors of virus integration, replication, transcription, and virion assembly. These proteins exert effects on Ad gene expression and replication. In transient plasmid transfection assays, Rep proteins inhibit gene expression from a variety of transcription promoters. We have examined Rep protein-mediated inhibition of transcription of the Ad major late transcription promoter (AdMLP) in vitro. Rep78/68 are the strongest transcription suppressors and the purine nucleotide binding site in the Rep proteins, and by implication, the ATPase activity or conformational change induced by nucleotide binding is required for full repression. Rep52 has modest effects, and Rep40 exerts no significant effect on transcription. Rep78/68 and their N-terminal 225-residue domain bind to a 55-bp AdMLP DNA fragment in gel shift assays, suggesting that protein-DNA interactions are required for inhibition. This interaction was confirmed in DNase I protection assays and maps to a region extending from the TATA box to the transcription initiation site. Gel shift, DNase I, and chemical cross-linking assays with TATA box-binding protein (TBP) and Rep68 indicate that both proteins interact with each other and with the promoter at adjacent sites. The demonstration of Rep interaction with TBP and the AdMLP suggests that Rep78/68 alter the preinitiation complex of RNA polymerase II transcription. These observations provide new insight into the mechanism of Rep-mediated inhibition of gene expression.


2008 ◽  
Vol 83 (1) ◽  
pp. 454-469 ◽  
Author(s):  
Kevin Nash ◽  
Weijun Chen ◽  
Max Salganik ◽  
Nicholas Muzyczka

ABSTRACT Adeno-associated virus (AAV) codes for four related nonstructural Rep proteins. AAV both replicates and assembles in the nucleus and requires coinfection with a helper virus, either adenovirus (Ad) or herpesvirus, for a productive infection. Like other more complex DNA viruses, it is believed that AAV interacts or modifies host cell proteins to carry out its infection cycle. To date, relatively little is known about the host proteins that interact with the viral Rep proteins, which are known to be directly involved in DNA replication, control of viral and cellular transcription, splicing, and protein translation. In this study, we used affinity-tagged Rep protein to purify cellular protein complexes that were associated with Rep in cells that had been infected with Ad and AAV. In all, we identified 188 cellular proteins from 16 functional categories, including 14 transcription factors, 6 translation factors, 15 potential splicing proteins, 5 proteins involved in protein degradation, and 13 proteins involved in DNA replication or repair. This dramatically increases the number of potential interactions over the current number of approximately 26. Twelve of the novel proteins found were further tested by coimmunoprecipitation or colocalization using confocal immunomicroscopy. Of these, 10 were confirmed as proteins that formed complexes with Rep, including proteins of the MCM complex (DNA replication), RCN1 (membrane transport), SMC2 (chromatin dynamics), EDD1 (ubiquitin ligase), IRS4 (signal transduction), and FUS (splicing). Computer analysis suggested that 45 and 28 of the 188 proteins could be placed in a pathway of interacting proteins involved in DNA replication and protein synthesis, respectively. Of the proteins involved in DNA replication, all of the previously identified proteins involved in AAV DNA replication were found, except Ad DBP. The only Ad protein found to interact with Rep was the E1b55K protein. In addition, we confirmed that Rep interacts with Ku70/80 helicase. In vitro DNA synthesis assays demonstrated that although Ku helicase activity could substitute for MCM to promote strand displacement synthesis, its presence was not essential. Our study suggests that the interaction of AAV with cellular proteins is much more complex than previously suspected and provides a resource for further studies of the AAV life cycle.


1999 ◽  
Vol 73 (11) ◽  
pp. 9314-9324 ◽  
Author(s):  
André Lieber ◽  
Dirk S. Steinwaerder ◽  
Cheryl A. Carlson ◽  
Mark A. Kay

ABSTRACT Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus–adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (ΔAd.AAV) and stimulate transgene integration. We demonstrate here that ΔAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. ΔAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. ΔAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The ΔAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with ΔAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that ΔAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. ΔAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.


2006 ◽  
Vol 80 (13) ◽  
pp. 6559-6567 ◽  
Author(s):  
Chaoyang Ye ◽  
Jianming Qiu ◽  
David J. Pintel

ABSTRACT Efficient expression of the adeno-associated virus type 5 (AAV5) P41 capsid gene promoter required adenovirus E1A and/or E1B; however, in contrast to what was observed for expression of the AAV2 capsid gene promoter (P40), neither adenovirus infection nor the large Rep protein was required. Although both the AAV2 and the AAV5 large Rep proteins efficiently bound the (GAGY)3 Rep-binding element, the AAV5 large Rep protein transactivated transcription of the inducible AAV2 P40 promoter much less well than AAV2 large Rep. Differences in their activation potentials were mapped to the amino-terminal region of the proteins, and the poorly transactivating AAV5 Rep protein could competitively inhibit AAV2 Rep transactivation.


2005 ◽  
Vol 79 (1) ◽  
pp. 28-38 ◽  
Author(s):  
John M. Casper ◽  
Jennifer M. Timpe ◽  
John David Dignam ◽  
James P. Trempe

ABSTRACT Adeno-associated virus (AAV) and other parvoviruses inhibit proliferation of nonpermissive cells. The mechanism of this inhibition is not thoroughly understood. To learn how AAV interacts with host cells, we investigated AAV's interaction with adenovirus (Ad), AAV's most efficient helper virus. Coinfection with Ad and AAV results in an AAV-mediated inhibition of Ad5 gene expression and replication. The AAV replication proteins (Rep) activate and repress gene expression from AAV and heterologous transcription promoters. To investigate the role of Rep proteins in the suppression of Ad propagation, we performed chromatin immunoprecipitation analyses that demonstrated in vivo AAV Rep protein interaction with the Ad E2a gene promoter. In vitro binding of purified AAV Rep68 protein to the Ad E2a promoter was characterized by electrophoretic mobility shift assays (Kd = 200 ± 25 nM). A 38 bp, Rep68-protected region (5′-TAAGAGTCAGCGCGCAGTATTTACTGAAGAGAGCCT-3′) was identified by DNase I footprint analysis. The 38-bp protected region contains the weak E2a TATA box, sequence elements that resemble the Rep binding sites identified by random sequence oligonucleotide selection, and the transcription start site. These results suggest that Rep binding to the E2a promoter contributes to the inhibition of E2a gene expression from the Ad E2a promoter and may affect Ad replication.


1988 ◽  
Vol 8 (6) ◽  
pp. 2513-2522
Author(s):  
J Gottlieb ◽  
N Muzyczka

When circular recombinant plasmids containing adeno-associated virus (AAV) DNA sequences are transfected into human cells, the AAV provirus is rescued. Using these circular AAV plasmids as substrates, we isolated an enzyme fraction from HeLa cell nuclear extracts that excises intact AAV DNA in vitro from vector DNA and produces linear DNA products. The recognition signal for the enzyme is a polypurine-polypyrimidine sequence which is at least 9 residues long and rich in G.C base pairs. Such sequences are present in AAV recombinant plasmids as part of the first 15 base pairs of the AAV terminal repeat and in some cases as the result of cloning the AAV genome by G.C tailing. The isolated enzyme fraction does not have significant endonucleolytic activity on single-stranded or double-stranded DNA. Plasmid DNA that is transfected into tissue culture cells is cleaved in vivo to produce a pattern of DNA fragments similar to that seen with purified enzyme in vitro. The activity has been called endo R for rescue, and its behavior suggests that it may have a role in recombination of cellular chromosomes.


2005 ◽  
Vol 79 (19) ◽  
pp. 12218-12230 ◽  
Author(s):  
Daniel L. Glauser ◽  
Okay Saydam ◽  
N. Alexander Balsiger ◽  
Irma Heid ◽  
R. Michael Linden ◽  
...  

ABSTRACT The adeno-associated virus (AAV) inverted terminal repeats (ITRs) contain the AAV Rep protein-binding site (RBS) and the terminal resolution site (TRS), which together act as a minimal origin of DNA replication. The AAV p5 promoter also contains an RBS, which is involved in Rep-mediated regulation of promoter activity, as well as a functional TRS, and origin activity of these signals has in fact been demonstrated previously in the presence of adenovirus helper functions. Here, we show that in the presence of herpes simplex virus type 1 (HSV-1) and AAV Rep protein, p5 promoter-bearing plasmids are efficiently amplified to form large head-to-tail concatemers, which are readily packaged in HSV-1 virions if an HSV-1 DNA-packaging/cleavage signal is provided in cis. We also demonstrate simultaneous and independent replication from the two alternative AAV replication origins, p5 and ITR, on the single-cell level using multicolor-fluorescence live imaging, a finding which raises the possibility that both origins may contribute to the AAV life cycle. Furthermore, we assess the differential affinities of Rep for the two different replication origins, p5 and ITR, both in vitro and in live cells and identify this as a potential mechanism to control the replicative and promoter activities of p5.


1998 ◽  
Vol 18 (10) ◽  
pp. 5921-5929 ◽  
Author(s):  
John A. Chiorini ◽  
Bastian Zimmermann ◽  
Linda Yang ◽  
Richard H. Smith ◽  
Aaron Ahearn ◽  
...  

ABSTRACT Adeno-associated virus encodes four nonstructural proteins, which are known as Rep78, Rep68, Rep52, and Rep40. Expression of these nonstructural proteins affects cell growth and gene expression through processes that have not yet been characterized. Using a yeast two-hybrid screen, we have demonstrated that a stable interaction occurs between the viral proteins Rep78 and Rep52 and the putative protein kinase PrKX, which is encoded on the X chromosome. The stability and specificity of the Rep-PrKX interaction were confirmed by coimmunoprecipitation of complexes assembled in vitro and in vivo. Overexpressed PrKX, which was purified from cos cells, was shown to phosphorylate a synthetic protein kinase A (PKA) substrate. However, this activity was dramatically inhibited by stoichiometric amounts of Rep52 and weakly inhibited with Rep68, which lacks the carboxy-terminal sequence contained in Rep52. Similarly, a stable interaction was observed with Rep78, which also contains the carboxy-terminal sequence of Rep52. A stable interaction and inhibition were also observed between Rep52 and the catalytic subunit of PKA. By using surface plasmon resonance and kinetic studies, Ki s of approximately 300 and 167 nM were calculated for Rep52 with PKA and with PrKX, respectively. Thus, Rep52 but not Rep68 can significantly inhibit the trans- and autophosphorylation activities of these kinases. The biological effects of Rep78-specific inhibition of PKA-responsive genes are illustrated by the reduction of steady-state levels of cyclic AMP-responsive-element-binding protein and cyclin A protein.


Author(s):  
Masahiko Imashimizu ◽  
Yuji Tokunaga ◽  
Ariel Afek ◽  
Hiroki Takahashi ◽  
Nobuo Shimamoto ◽  
...  

In the process of transcription initiation by RNA polymerase, promoter DNA sequences affect multiple reaction pathways determining the productivity of transcription. However, the question of how the molecular mechanism of transcription initiation depends on sequence properties of promoter DNA remains poorly understood. Here, combining the statistical mechanical approach with high-throughput sequencing results, we characterize abortive transcription and pausing during transcription initiation by Escherichia coli RNA polymerase at a genome-wide level. Our results suggest that initially transcribed sequences enriched with thymine bases represent the signal inducing abortive transcription. On the other hand, certain repetitive sequence elements broadly embedded in promoter regions constitute the signal inducing pausing. Both signals decrease the productivity of transcription initiation. Based on solution NMR and in vitro transcription measurements, we also suggest that repetitive sequence elements of promoter DNA modulate the rigidity of its double-stranded form, which profoundly influences the reaction coordinates of the productive initiation via pausing.


1999 ◽  
Vol 73 (4) ◽  
pp. 2682-2693 ◽  
Author(s):  
Masashi Urabe ◽  
Yoko Hasumi ◽  
Akihiro Kume ◽  
Richard T. Surosky ◽  
Gary J. Kurtzman ◽  
...  

ABSTRACT The adeno-associated virus (AAV) Rep78 and Rep68 proteins are required for site-specific integration of the AAV genome into the AAVS1 locus (19q13.3-qter) as well as for viral DNA replication. Rep78 and Rep68 bind to the GAGC motif on the inverted terminal repeat (ITR) and cut at the trs (terminal resolution site). A similar reaction is believed to occur in AAVS1 harboring an analogous GAGC motif and a trs homolog, followed by integration of the AAV genome. To elucidate the functional domains of Rep proteins at the amino acid level, we performed charged-to-alanine scanning mutagenesis of the N terminus (residues 1 to 240) of Rep78, where DNA binding and nicking domains are thought to exist. Mutants were analyzed for their abilities to bind the GAGC motif, nick at the trs homolog, and integrate an ITR-containing plasmid into AAVS1 by electrophoretic mobility shift assay, trs endonuclease assay, and PCR-based integration assay. We identified the residues responsible for DNA binding: R107A, K136A, and R138A mutations completely abolished the binding activity. The H90A or H92A mutant, carrying a mutation in a putative metal binding site, lost nicking activity while retaining binding activity. Mutations affecting DNA binding or trsnicking also impaired the site-specific integration, except for E66A and E239A. These results provide important information on the structure-function relationship of Rep proteins. We also describe an aberrant nicking of Rep78. We found that Rep78 cuts predominantly at the trs homolog not only between the T residues (GGT/TGG), but also between the G and T residues (GG/TTGG), which may be influenced by the sequence surrounding the GAGC motif.


Sign in / Sign up

Export Citation Format

Share Document