scholarly journals Susceptibility of Bovine Antigen-Presenting Cells to Infection by Bovine Herpesvirus 1 and In Vitro Presentation to T Cells: Two Independent Events

1999 ◽  
Vol 73 (6) ◽  
pp. 4840-4846 ◽  
Author(s):  
Ximena Renjifo ◽  
Carine Letellier ◽  
Günther M. Keil ◽  
Jamila Ismaili ◽  
Alain Vanderplasschen ◽  
...  

ABSTRACT The aim of the present study was to develop an in vitro system for presentation of bovine herpesvirus 1 (BHV-1) antigens to bovine T lymphocytes and to characterize the antigen-presenting cells (APC) which efficiently activate CD4+ T cells. Two approaches were used to monitor the infection of APC by BHV-1 as follows: (i) detection of viral glycoproteins at the cell surface by immunofluorescence staining and (ii) detection of UL26 transcripts by reverse transcription-PCR. The monocytes were infected, while dendritic cells (DC) did not demonstrate any detectable viral expression. These data suggest that monocytes are one site of replication, while DC are not. The capacities of monocytes and DC to present BHV-1 viral antigens in vitro were compared. T lymphocytes (CD2+ or CD4+) from BHV-1 immune cattle were stimulated in the presence of APC previously incubated with live or inactivated wild-type BHV-1. DC stimulated strong proliferation of Ag-specific T cells, while monocytes were poor stimulators of T-cell proliferation. When viral attachment to the surface of the APC was inhibited by virus pretreatment with soluble heparin, T-cell proliferation was dramatically decreased. Unexpectedly, incubation of DC and monocytes with the deletion mutant BHV-1 gD−/−, which displays impaired fusion capacity, resulted in strong activation of T lymphocytes by both APC types. Collectively, these results indicate that presentation of BHV-1 antigens to immune T cells is effective in the absence of productive infection and suggest that BHV-1 gD−/− mutant virus could be used to induce virus-specific immune responses in cattle.

2021 ◽  
Author(s):  
◽  
Aras Toker

<p>Glatiramer acetate (GA) is approved for the treatment of relapsing-remitting multiple sclerosis (MS), and can suppress experimental autoimmune encephalomyelitis (EAE), a murine model of human MS. GA treatment is associated with the induction of anti-inflammatory TH2 responses and with the antigen specific expansion of regulatory T cells that counteract or inhibit pathogenic events in MS and EAE. These T cell mediated mechanisms of protection are considered to be a result of modulation of antigen presenting cells (APCs) by GA, rather than direct effects on T cells. However, it is unknown if GA preferentially targets a specific APC subset or can act through multiple APCs in vivo. In addition, GA-modulated innate cells may also exhibit direct antigen non-specific suppression of autoreactive cells. One objective of this study was to identify the in vivo target cell population of GA and to assess the potential of the target cells to antigen non-specifically suppress immune responses. Fluorophor-labelled GA bound to monocytes after intravenous injections, suggesting that monocytes may be the primary target of GA in vivo. In addition, intravenous GA treatment enhanced the intrinsic ability of monocytes to suppress T cell proliferation, both in vitro and in vivo. The findings of this study therefore suggest that GA-induced monocytes may contribute to GA therapy through direct mechanisms of antigen non-specific T cell immunosuppression. A further objective of this work was to investigate the potential of an in vivo drug targeting approach. This approach was hypothesised to increase the uptake of GA by the target cells and substantially improve GA treatment through antigen specific mechanisms such as induction of TH2 or regulatory T cells. Targeting antigens to professional APCs with an anti-MHC class II antibody resulted in significantly enhanced T cell proliferation in vitro. However, no EAE suppression occurred when GA was targeted to MHC class II in vivo. In addition, targeting GA specifically to monocytes also failed to suppress EAE. These findings suggest that GA treatment may selectively modulate monocytes to enhance their ability to inhibit autoreactive T cells, which could be part of the mechanism by which GA ameliorates MS. Targeting GA to a specific cell type may not be a powerful approach to improve treatment, because increased proliferation of GA specific T cells is not sufficient for disease suppression, and conjugation to antibodies may functionally reduce GA to a mere antigen devoid of immunomodulatory capacity.</p>


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5432-5432
Author(s):  
Monica Bocchia ◽  
Micaela Ippoliti ◽  
Marzia Defina ◽  
Rosaria Crupi ◽  
Maristella Tassi ◽  
...  

Abstract The Wilms tumor gene WT1 is overexpressed in hematopoietic malignancies such as Myelodysplastic syndromes and leukemias and the WT1 protein was demonstrated to be an attractive target antigen for an immunotherapeutic approach to these diseases. Most of the efforts have been focused to the search for immunogenic peptides suitable for inducing cytotoxic T lymphocytes (CTLs) and to less extent for CD4+ T lymphocytes with potential cytotoxic activity. On this matter, in our previous experience with a p210-derived peptide vaccine developed for chronic myeloid leukemia patients with minimal residual disease, the main immune and therapeutic effect observed after vaccinations appeared to be mediated by peptide-specific CD4+ T cells induced by the longest peptide (25 mer) included in our vaccine. CML-peptide specific T cells were found to be either CD4+/perforin+ or CD4+/CD25+/Foxp3+ and we recently showed their direct cytotoxicity against a CML cell line. Thus to pursue a vaccine strategy mainly devoted to a similar CD4+ T cell immune response, we screened WT1 protein through Syfpeithi database to identify original peptides with a suitable length (23–25 amino acids) to be processed by several HLA class II molecules and to induce a strong CD4+ T cell stimulation. Additionally, in order to maximize the immunogenic potential of the novel peptides, we focused our attention on areas of the protein with known CTLs/CD4 T cells immunogenic epitopes. We identified two peptides that fulfilled these requirements: SEPQQMGSDVRDLNALLPAVPSLGG (WT1-iso5 64–88) which includes 5 amino acid from the alternative splicing derived isoform 5 of WT1 and the first 20 aa of “canonical” WT1 sequence and RPFMCAYPGCNKRYFKLSHLQMHSR (WT1321–345). Both 25mer peptides showed strong HLA binding properties for HLA-DRB1*0101, HLADRB1* 0401, HLA-DRB1*0701, HLA-DRB1*1101, HLA-DRB1*1501 and HLADRB1* 0301( DR17). We first tested them in vitro for their capability to induce peptide-specific CD4+ T cells. Briefly, CD4+ T cells freshly isolated from PBMC were cultured for 21 days in 5% AB human serum media while undergoing to 3 rounds of stimulation with autologous CD14+ cells and both WT1-iso5 64–88 and WT1 321–345 peptides at 20μg/ml in the presence of IL-15. This in vitro stimulation was performed in 3 normal subjects and in 3 MDS patients with high levels of bone marrow WT1 transcript (2 patients presenting a low-International Prognostic Scoring System (IPSS) refractory anemia (RA) and 1 with intermediate IPSS RA). In all 3 healthy donors tested, both peptides were able to induce peptide specific CD4+ T cell proliferation as measured by standard 3HThymidine assay, with a stimulation index (SI) ranging from 2.0 to 2.5 regardless of their HLA-DR phenotype ( SI= cpm CD4+ T cells plus test peptides/CD4+ T cell alone or CD4+ T cells plus control peptides; peptide-specific T cell proliferation was considered positive for SI≥2). Similar results were obtained in all 3 MDS patients in which WT1-iso5 64–88 and WT1 321–345 induced peptide-specific CD4+ T cell proliferation with a SI value of 2.5, 2.9 and 3.0 respectively. In conclusion the present study identified 2 novel WT1-derived 25 mer peptides which were able to easily induce in vitro a peptide-specific CD4+ T cell response in MDS patients. WT1-specific CD4+ T cells proliferated with similar SI values in normal donors and in WT1 positive MDS patients, the latter being highly exposed to this antigen and thus potentially tolerant to it. A possible cytotoxic activity of these WT1-specific CD4+ T cells is under evaluation and in vivo vaccinations of low-intermediate IPSS MDS patients with these peptides are planned.


2021 ◽  
Author(s):  
◽  
Aras Toker

<p>Glatiramer acetate (GA) is approved for the treatment of relapsing-remitting multiple sclerosis (MS), and can suppress experimental autoimmune encephalomyelitis (EAE), a murine model of human MS. GA treatment is associated with the induction of anti-inflammatory TH2 responses and with the antigen specific expansion of regulatory T cells that counteract or inhibit pathogenic events in MS and EAE. These T cell mediated mechanisms of protection are considered to be a result of modulation of antigen presenting cells (APCs) by GA, rather than direct effects on T cells. However, it is unknown if GA preferentially targets a specific APC subset or can act through multiple APCs in vivo. In addition, GA-modulated innate cells may also exhibit direct antigen non-specific suppression of autoreactive cells. One objective of this study was to identify the in vivo target cell population of GA and to assess the potential of the target cells to antigen non-specifically suppress immune responses. Fluorophor-labelled GA bound to monocytes after intravenous injections, suggesting that monocytes may be the primary target of GA in vivo. In addition, intravenous GA treatment enhanced the intrinsic ability of monocytes to suppress T cell proliferation, both in vitro and in vivo. The findings of this study therefore suggest that GA-induced monocytes may contribute to GA therapy through direct mechanisms of antigen non-specific T cell immunosuppression. A further objective of this work was to investigate the potential of an in vivo drug targeting approach. This approach was hypothesised to increase the uptake of GA by the target cells and substantially improve GA treatment through antigen specific mechanisms such as induction of TH2 or regulatory T cells. Targeting antigens to professional APCs with an anti-MHC class II antibody resulted in significantly enhanced T cell proliferation in vitro. However, no EAE suppression occurred when GA was targeted to MHC class II in vivo. In addition, targeting GA specifically to monocytes also failed to suppress EAE. These findings suggest that GA treatment may selectively modulate monocytes to enhance their ability to inhibit autoreactive T cells, which could be part of the mechanism by which GA ameliorates MS. Targeting GA to a specific cell type may not be a powerful approach to improve treatment, because increased proliferation of GA specific T cells is not sufficient for disease suppression, and conjugation to antibodies may functionally reduce GA to a mere antigen devoid of immunomodulatory capacity.</p>


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 294-294
Author(s):  
Sravanti Rangaraju ◽  
Junghwa Choi ◽  
Cynthia R. Giver ◽  
Edmund K. Waller

Abstract Background Graft versus host disease (GVHD) following allogeneic hematopoietic stem cell transplant (allo-HSCT) is caused by CD4+ and CD8+ donor T cells directed against mismatched recipient antigens, presented in the context of donor MHC-II (indirect pathway) and recipient MHC-I (direct pathway). Recently, the presence of 'cross-dressed' CD11c+ antigen presenting cells (APCs) expressing both donor and recipient type MHC-I molecules has been demonstrated in animal organ and HSCT transplant models supporting 'semi-direct' pathway of allo-activation (Wang et al, Blood. 2011).These APCs can efficiently present allo-antigens to both CD4+ and CD8+ T cells and activate immune responses that could lead to allograft rejection or GVHD. Exchange of membrane fragments and associated proteins between cells, termed trogocytosis, generates cross-dressed APCs.We sought to test whether cross-dressed APCs facilitate antigen presentation to donor T cells and initiate GVHD following allo-HSCT. Further, we tested an array of drugs as inhibitors of trogocytosis, to interrupt the semi-direct pathway of allo-antigen presentation. Methods In vivo experiments used a B6(H2Kb) ˆ B10.BR(H2Kk) murine transplant model. Spleens of transplanted mice were analyzed on days 10, 15, 20 post-transplant for presence of cross dressed CD11c+cells, and their expression of CD80, CD86 and MHC-II by flow cytometry. Cross dressed donor CD11c+ FACS sorted cells from recipient spleens were co-cultured with CFSE labeled donor type T-cells for 6 days, and T-cell proliferation was measured as dilution of CFSE by flow cytometry. In vitro experiments used primary MLR consisting of CFSE labeled B6 bone marrow cells co-cultured with PKH26 (membrane dye) labeled B10.BR splenocytes. B6 antigen presenting cells were analyzed by flow cytometry for the presence of CFSE+PKH26+ double positive cells generated by trogocytosis. Pharmacological inhibitors of cytoskeleton function were added to the primary MLR and their effect on trogocytosis as well as T cell proliferation was assessed. Results Cross-dressed donor CD11c+ APCs were generated in vivo following allo-HSCT (Figure 1). Recipient spleens showed that 50%, 28.6% (p=0.01) and 12% (p=0.02) of donor type CD11c+ cells were cross dressed on days 10, 15 and 20 respectively post transplant (n=5). These cross dressed APCs expressed higher levels of co-stimulatory molecules CD80 (p<0.001) and CD86 (p<0.001), and MHC-II compared to non-cross-dressed donor CD11c+ cells (Figure 2). Sorted cross dressed CD11c+ cells from recipient mice were able to induce in vitro proliferation of co-geneic CD8 T-cells, while their non-crossdressed counterparts did not. We demonstrated that cross-dressed CD11c+ cells were generated in vitro, by exchange of plasma membrane fragments and could be inhibited in vitro by low doses of paclitaxel and VIP antagonist (Figure 3), while preserving cell viability. Further more, bone marrow treated with 0.05uM of paclitaxel, caused significantly decreased T cell proliferation in primary MLR compared to non drug treated bone marrow. Discussion The high frequencies of cross-dressed donor CD11c+ APCs following allo-HSCT suggests that semi-direct allo-antigen presentation may play a key role in the initiation of GVHD, while the decreasing trend could reflect replacement of host cells by donor hematopoetic cells. Reducing the generation of cross-dressed APCs by pharmacological inhibition of trogocytosis is a novel approach to reduce GVHD post allo-HSCT, targeting the semi-direct pathway of allo-antigen presentaion. Our data shows that very low doses of paclitaxel, a microtubule inhibitor and VIPHyb, an antagonist of Vasoactive Intestinal Peptide signaling, can reduce semi-direct presentaion of allo-antigen to Tcells and reduce alloreactivity without direct cytotoxic effect. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 11 ◽  
Author(s):  
Christian Binder ◽  
Felix Sellberg ◽  
Filip Cvetkovski ◽  
Erik Berglund ◽  
David Berglund

Antibodies are commonly used in organ transplant induction therapy and to treat autoimmune disorders. The effects of some biologics on the human immune system remain incompletely characterized and a deeper understanding of their mechanisms of action may provide useful insights for their clinical application. The goal of this study was to contrast the mechanistic properties of siplizumab with Alemtuzumab and rabbit Anti-Thymocyte Globulin (rATG). Mechanistic assay systems investigating antibody-dependent cell-mediated cytotoxicity, antibody-dependent cell phagocytosis and complement-dependent cytotoxicity were used to characterize siplizumab. Further, functional effects of siplizumab, Alemtuzumab, and rATG were investigated in allogeneic mixed lymphocyte reaction. Changes in T cell activation, T cell proliferation and frequency of naïve T cells, memory T cells and regulatory T cells induced by siplizumab, Alemtuzumab and rATG in allogeneic mixed lymphocyte reaction were assessed via flow cytometry. Siplizumab depleted T cells, decreased T cell activation, inhibited T cell proliferation and enriched naïve and bona fide regulatory T cells. Neither Alemtuzumab nor rATG induced the same combination of functional effects. The results presented in this study should be used for further in vitro and in vivo investigations that guide the clinical use of immune modulatory biologics.


2019 ◽  
Vol 15 (11) ◽  
pp. 2229-2239 ◽  
Author(s):  
Zhuoran Tang ◽  
Fengzhen Mo ◽  
Aiqun Liu ◽  
Siliang Duan ◽  
Xiaomei Yang ◽  
...  

Adoptive cell-based immunotherapy typically utilizes cytotoxic T lymphocytes (CTLs), expanding these cells ex vivo. Such expansion is traditionally accomplished through the use of autologous APCs that are capable of interactions with T cells. However, incidental inhibitory program such as CTLA-4 pathway can impair T cell proliferation. We therefore designed a nanobody which is specific for CTLA-4 (CTLA-4 Nb 16), and we then used this molecule to assess its ability to disrupt CTLA-4 signaling and thereby overcome negative costimulation of T cells. With CTLA-4 Nb16 stimulation, dendritic cell/hepatocellular carcinoma fusion cells (DC/HepG2-FCs) enhanced autologous CD8+ T cell proliferation and production of IFN-γ in vitro, thereby leading to enhanced killing of tumor cells. Using this approach in the context of adoptive CD8+ immunotherapy led to a marked suppression of tumor growth in murine NOD/SCID hepatocarcinoma or breast cancer xenograft models. We also observed significantly increased tumor cell apoptosis, and corresponding increases in murine survival. These findings thus demonstrate that in response to nanobody stimulation, DC/tumor cells-FC-induced specific CTLs exhibit superior anti-tumor efficacy, making this a potentially valuable means of achieving better adoptive immunotherapy outcomes in cancer patients.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3629-3639 ◽  
Author(s):  
Laurent Genestier ◽  
Romain Paillot ◽  
Nathalie Bonnefoy-Berard ◽  
Geneviéve Meffre ◽  
Monique Flacher ◽  
...  

Abstract In addition to their major function in antigen presentation and natural killer cell activity regulation, HLA class I molecules may modulate T-cell activation and proliferation. Monoclonal antibodies (MoAbs) that recognize distinct epitopes of HLA class I molecules were reported to interfere with T-cell proliferation. We show here that two MoAbs (mouse MoAb90 and rat YTH862) that bind to an epitope of the α1 domain of HLA class I heavy chain induce apoptotic cell death of activated, but not resting, peripheral T lymphocytes. Other reference anti-HLA class I antibodies specific for distinct epitopes of the α1 (B9.12.1), α2 (W6/32), or α3 (TP25.99) domains of the heavy chain decreased T-cell proliferation but had little or no apoptotic effect. Apoptosis shown by DNA fragmentation, phosphatidylserine externalization, and decrease of mitochondrial transmembrane potential was observed whatever the type of T-cell activator. Apoptosis did not result from Fas/Fas-L interaction and distinct though partly overlapping populations of activated T cells were susceptible to Fas– and HLA class I–mediated apoptosis, respectively. Induction of apoptosis did not require HLA class I cross-linking inasmuch as it could be observed with monovalent Fab′ fragments. The data indicate that MoAb90 and YTH862 directed against the α1 domain of HLA class I trigger apoptosis of activated T lymphocytes by a pathway which does not involve Fas-ligand.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 300 ◽  
Author(s):  
Konstantina Antoniou ◽  
Fanny Ender ◽  
Tillman Vollbrandt ◽  
Yves Laumonnier ◽  
Franziska Rathmann ◽  
...  

Activation of the C5/C5a/C5a receptor 1 (C5aR1) axis during allergen sensitization protects from maladaptive T cell activation. To explore the underlying regulatory mechanisms, we analyzed the impact of C5aR1 activation on pulmonary CD11b+ conventional dendritic cells (cDCs) in the context of house-dust-mite (HDM) exposure. BALB/c mice were intratracheally immunized with an HDM/ovalbumin (OVA) mixture. After 24 h, we detected two CD11b+ cDC populations that could be distinguished on the basis of C5aR1 expression. C5aR1− but not C5aR1+ cDCs strongly induced T cell proliferation of OVA-reactive transgenic CD4+ T cells after re-exposure to antigen in vitro. C5aR1− cDCs expressed higher levels of MHC-II and CD40 than their C5aR1+ counterparts, which correlated directly with a higher frequency of interactions with cognate CD4+ T cells. Priming of OVA-specific T cells by C5aR1+ cDCs could be markedly increased by in vitro blockade of C5aR1 and this was associated with increased CD40 expression. Simultaneous blockade of C5aR1 and CD40L on C5aR1+ cDCs decreased T cell proliferation. Finally, pulsing with OVA-induced C5 production and its cleavage into C5a by both populations of CD11b+ cDCs. Thus, we propose a model in which allergen-induced autocrine C5a generation and subsequent C5aR1 activation in pulmonary CD11b+ cDCs promotes tolerance towards aeroallergens through downregulation of CD40.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4484-4484 ◽  
Author(s):  
Antonio Pierini ◽  
Lucrezia Colonna ◽  
Maite Alvarez ◽  
Dominik Schneidawind ◽  
Byung-Su Kim ◽  
...  

Adoptive transfer of CD4+CD25+FoxP3+ regulatory T cells (Tregs) prevents graft versus host disease (GvHD) in several animal models and following allogeneic hematopoietic cell transplantation (HCT) in clinical trials. In these models donor derived Tregs have been mainly used as they share the same major histocompatibility complex (MHC) with conventional CD4+ and CD8+ T cells (Tcons) that are primarily responsible for GvHD onset and persistence. Third-party derived Tregs are a promising alternative tool for cellular therapy as they can be prepared in advance, screened for pathogens and activity and banked. In this study we explored MHC disparities between Tregs and Tcons in HCT to evaluate the impact of these different cell populations in GvHD prevention and survival after transplant. Methods and Results We evaluated the ability of highly purified Treg to suppress proliferation of C57BL/6 (H-2b) Tcons following exposure to irradiated splenocytes from BALB/C (H-2d) mice in vitro in a mixed lymphocyte reaction (MLR). Either donor derived C57BL/6 (H-2b) or third party FVB (H-2q) Tregs suppressed Tcon proliferation at the Treg/Tcon ratios of 1:2 and 1:4. The same Treg population effectively suppressed different MHC derived Tcons where BALB/C (H-2d) or FVB (H-2q, third-party) Tcons were incubated with irradiated splenocytes from C57BL/6 (H-2b) mice and were effectively suppressed with BALB/C (H-2d) Tregs. In the MLR, third-party Tregs present the same activation molecule expression patterns as MHC matched Tregs: CTLA4 and LAG3 expression is enhanced after stimulation with interleukin-2 (IL-2) and anti-CD3/CD28 beads, while MHC class II molecule expression is increased after 3-4 days of culture with Tcons and irradiated splenocytes. Furthermore third-party and MHC matched Tregs express the same levels of interleukin-10 (IL-10). We translated these results to in vivo studies in animal models. In these studies T cell depleted bone marrow (TCD BM) from C57BL/6 (H-2b) mice was injected into lethally irradiated (total body irradiation, 8 Gy) BALB/C (H-2d) recipient mice. 2 days later GvHD was induced by injecting luc+ donor derived Tcons (1x106/mouse). Using this model GvHD was evaluated following the adoptive transfer of freshly isolated CD4+CD25+FoxP3+ Tregs derived from BALB/C (H-2d, host type), C57BL/6 (H-2b, donor type), FVB (H-2q, third-party) or BALB/B (H-2b, minor mismatched with the donor, major mismatched with the host) mice at the different Treg/Tcon ratios of 1:1, 1:2 and 1:4. As expected, donor Tregs exerted the strongest dose dependent GvHD protection (p = 0.028), while host Tregs did not improve mouse survival (p = 0.58). Third-party and minor mismatched with the donor Tregs improved mouse survival (third-party and minor mismatched with the donor respectively, p = 0.028 and p = 0.17) but mice had worse GvHD score profiles (both p< 0.001) and could not recover their weight as well as mice treated with donor Tregs (both p< 0.001). In vivoTcon bioluminescent imaging confirmed these results showing a reduced Tcon proliferation in mice treated with donor, third-party and minor mismatched with the donor Tregs, the first exerting the strongest effect (after 6 weeks of observation, p< 0.001). Conclusions Our studies indicate that MHC disparities between Tregs and Tcons do not represent an insurmountable barrier for Treg function. In vitro and in vivo data strongly suggest that Tregs can suppress Tcon proliferation without requiring MHC matching. In vivo GvHD prevention efficiency was affected by MHC disparities with donor derived Treg being the most effective, however, third party Treg also resulted in GvHD attenuation. These studies indicate that both donor and third party Treg could be effective in clinical application raising the possibility of screening and banking Treg for use. Further, these studies highlight the need for activation of the Treg on host tissues to effectively suppress conventional T cell proliferation and GvHD induction. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document