scholarly journals Polyomavirus-Infected Dendritic Cells Induce Antiviral CD8+ T Lymphocytes

2000 ◽  
Vol 74 (9) ◽  
pp. 4093-4101 ◽  
Author(s):  
Donald R. Drake ◽  
Janice M. Moser ◽  
Annette Hadley ◽  
John D. Altman ◽  
Charles Maliszewski ◽  
...  

ABSTRACT CD8+ T cells are critical for the clearance of acute polyomavirus infection and the prevention of polyomavirus-induced tumors, but the antigen-presenting cell(s) involved in generating polyomavirus-specific CD8+ T cells have not been defined. We investigated whether dendritic cells and macrophages are permissive for polyomavirus infection and examined their potential for inducing antiviral CD8+ T cells. Although dendritic cells and macrophages both supported productive polyomavirus infection, dendritic cells were markedly more efficient at presenting the immunodominant viral epitope to CD8+ T cells. Additionally, infected dendritic cells, but not infected macrophages, primed anti-polyomavirus CD8+ T cells in vivo. Treatment with Flt3 ligand, a hematopoietic growth factor that dramatically expands the number of dendritic cells, markedly enhanced the magnitude of virus-specific CD8+ T-cell responses during acute infection and the pool of memory anti-polyomavirus CD8+ T cells. These findings suggest that virus-infected dendritic cells induce polyomavirus-specific CD8+ T cells in vivo and raise the potential for their use as cellular adjuvants to promote CD8+ T cell surveillance against polyomavirus-induced tumors.

1992 ◽  
Vol 175 (1) ◽  
pp. 267-273 ◽  
Author(s):  
N Bhardwaj ◽  
S M Friedman ◽  
B C Cole ◽  
A J Nisanian

Dendritic cells are a small subset of human blood mononuclear cells that are potent stimulators of several T cell functions. Here we show they are 10-50-fold more potent than monocytes or B cells in inducing T cell responses to a panel of superantigens. Furthermore, dendritic cells can present femtomolar concentrations of superantigen to T cells even at numbers where other antigen-presenting cells (APCs) are inactive. Although dendritic cells express very high levels of the major histocompatibility complex products that are required to present superantigens, it is only necessary to pulse these APCs for 1 hour with picomolar levels of one superantigen, staphylococcal enterotoxin B, to maximally activate T cells. Our results suggest that very small amounts of superantigen will be immunogenic in vivo if presented on dendritic cells.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2764-2771 ◽  
Author(s):  
Beth D. Harrison ◽  
Julie A. Adams ◽  
Mark Briggs ◽  
Michelle L. Brereton ◽  
John A. Liu Yin

Abstract Effective presentation of tumor antigens is fundamental to strategies aimed at enrolling the immune system in eradication of residual disease after conventional treatments. Myeloid malignancies provide a unique opportunity to derive dendritic cells (DCs), functioning antigen-presenting cells, from the malignant cells themselves. These may then co-express leukemic antigens together with appropriate secondary signals and be used to generate a specific, antileukemic immune response. In this study, blasts from 40 patients with acute myeloid leukemia (AML) were cultured with combinations of granulocyte-macrophage colony-stimulating factor, interleukin 4, and tumor necrosis factor α, and development to DCs was assessed. After culture, cells from 24 samples exhibited morphological and immunophenotypic features of DCs, including expression of major histocompatibility complex class II, CD1a, CD83, and CD86, and were potent stimulators in an allogeneic mixed lymphocyte reaction (MLR). Stimulation of autologous T-cell responses was assessed by the proliferative response of autologous T cells to the leukemic DCs and by demonstration of the induction of specific, autologous, antileukemic cytotoxicity. Of 17 samples, 11 were effective stimulators in the autologous MLR, and low, but consistent, autologous, antileukemic cytotoxicity was induced in 8 of 11 cases (mean, 27%; range, 17%-37%). This study indicates that cells with enhanced antigen-presenting ability can be generated from AML blasts, that these cells can effectively prime autologous cytotoxic T cells in vitro, and that they may be used as potential vaccines in the immunotherapy of AML.


Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. 2694-2705 ◽  
Author(s):  
Sherrie J. Divito ◽  
Zhiliang Wang ◽  
William J. Shufesky ◽  
Quan Liu ◽  
Olga A. Tkacheva ◽  
...  

Abstract The prevailing idea regarding the mechanism(s) by which therapeutic immunosuppressive dendritic cells (DCs) restrain alloimmunity is based on the concept that they interact directly with antidonor T cells, inducing anergy, deletion, and/or regulation. However, this idea has not been tested in vivo. Using prototypic in vitro–generated maturation-resistant (MR) DCs, we demonstrate that once MR-DCs carrying donor antigen (Ag) are administered intravenously, they decrease the direct and indirect pathway T-cell responses and prolong heart allograft survival but fail to directly regulate T cells in vivo. Rather, injected MR-DCs are short-lived and reprocessed by recipient DCs for presentation to indirect pathway CD4+ T cells, resulting in abortive activation and deletion without detrimental effect on the number of indirect CD4+ FoxP3+ T cells, thus increasing the regulatory to effector T cell relative percentage. The effect on the antidonor response was independent of the method used to generate therapeutic DCs or their viability; and in accordance with the idea that recipient Ag-presenting cells mediate the effects of therapeutic DCs in transplantation, prolongation of allograft survival was achieved using donor apoptotic MR-DCs or those lacking surface major histocompatibility complex molecules. We therefore conclude that therapeutic DCs function as Ag-transporting cells rather than Ag-presenting cells to prolong allograft survival.


2001 ◽  
Vol 75 (1) ◽  
pp. 544-547 ◽  
Author(s):  
Donald R. Drake ◽  
Mandy L. Shawver ◽  
Annette Hadley ◽  
Eric Butz ◽  
Charles Maliszewski ◽  
...  

ABSTRACT Dendritic cells are pivotal antigen-presenting cells for generating adaptive T-cell responses. Here, we show that dendritic cells belonging to either the myeloid-related or lymphoid-related subset are permissive for infection by mouse polyomavirus and, when loaded with a peptide corresponding to the immunodominant anti-polyomavirus CD8+T-cell epitope or infected by polyomavirus, are each capable of driving expansion of primary polyomavirus-specific CD8+ T-cell responses in vivo.


2004 ◽  
Vol 78 (21) ◽  
pp. 11641-11647 ◽  
Author(s):  
Hong He ◽  
Ronald J. Messer ◽  
Shimon Sakaguchi ◽  
Guojun Yang ◽  
Shelly J. Robertson ◽  
...  

ABSTRACT Chronic infection with Friend retrovirus is associated with suppressed antitumor immune responses. In the present study we investigated whether modulation of T-cell responses during acute infection would restore antitumor immunity in persistently infected mice. T-cell modulation was done by treatments with DTA-1 anti- glucocorticoid-induced tumor necrosis factor receptor monoclonal antibodies. The DTA-1 monoclonal antibody is nondepleting and delivers costimulatory signals that both enhance the activation of effector T cells and inhibit suppression by regulatory T cells. DTA-1 therapy produced faster Th1 immune responses, significant reductions in both acute virus loads and pathology and, most importantly, long-term improvement of CD8+ T-cell-mediated antitumor responses.


2004 ◽  
Vol 200 (3) ◽  
pp. 297-306 ◽  
Author(s):  
Amy Morck Thomas ◽  
Lynn M. Santarsiero ◽  
Eric R. Lutz ◽  
Todd D. Armstrong ◽  
Yi-Cheng Chen ◽  
...  

Tumor-specific CD8+ T cells can potentially be activated by two distinct mechanisms of major histocompatibility complex class I–restricted antigen presentation as follows: direct presentation by tumor cells themselves or indirect presentation by professional antigen-presenting cells (APCs). However, controversy still exists as to whether indirect presentation (the cross-priming mechanism) can contribute to effective in vivo priming of tumor-specific CD8+ T cells that are capable of eradicating cancer in patients. A clinical trial of vaccination with granulocyte macrophage–colony stimulating factor–transduced pancreatic cancer lines was designed to test whether cross-presentation by locally recruited APCs can activate pancreatic tumor-specific CD8+ T cells. Previously, we reported postvaccination delayed-type hypersensitivity (DTH) responses to autologous tumor in 3 out of 14 treated patients. Mesothelin is an antigen demonstrated previously by gene expression profiling to be up-regulated in most pancreatic cancers. We report here the consistent induction of CD8+ T cell responses to multiple HLA-A2, A3, and A24-restricted mesothelin epitopes exclusively in the three patients with vaccine-induced DTH responses. Importantly, neither of the vaccinating pancreatic cancer cell lines expressed HLA-A2, A3, or A24. These results provide the first direct evidence that CD8 T cell responses can be generated via cross-presentation by an immunotherapy approach designed to recruit APCs to the vaccination site.


1998 ◽  
Vol 187 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Kelli R. Ryan ◽  
Brian D. Evavold

Clonal T cell unresponsiveness, or anergy, has been proposed as a mechanism of peripheral tolerance in vivo, and as a potential means of curbing unwanted T cell responses. In this study, anergy was induced in a T helper cell (Th) clone reactive to hemoglobin (Hb) peptide 64–76 by coculture of the T cells with live antigen-presenting cells (APCs) and 74L, a peptide analog of Hb(64–76) that contains a single amino acid substitution of leucine for glycine at position 74, or with a low concentration of the agonist ligand. The anergic state was characterized by blunted proliferation and interleukin (IL) 2 production upon restimulation with Hb(64–76), and was not the result of impaired TCR/CD3 downmodulation. The addition of exogenous IL-12 transiently restored proliferation of the anergic lines, but removal of IL-12 from culture returned the T cells to their nonproliferative state. Interestingly, persistence of the anergic phenotype was observed despite biweekly restimulation with antigen, APCs, and IL-2. Thus, T cell unresponsiveness induced by a peptide produced a stable, persistent anergic state in a Th0 clone that was not reversible by stimulation with IL-2 or -12.


1993 ◽  
Vol 178 (6) ◽  
pp. 1893-1901 ◽  
Author(s):  
P Paglia ◽  
G Girolomoni ◽  
F Robbiati ◽  
F Granucci ◽  
P Ricciardi-Castagnoli

Dendritic cells (DC) can provide all the known costimulatory signals required for activation of unprimed T cells and are the most efficient and perhaps the critical antigen presenting cells in the induction of primary T cell-mediated immune responses. It is now shown that mouse cell lines with many of the features of DC can be generated using the MIB phi 2-N11 retroviral vector transducing a novel envAKR-mycMH2 fusion gene. The immortalized dendritic cell line (CB1) displays most of the morphologic, immunophenotypic, and functional attributes of DC, including constitutive expression of major histocompatibility complex (MHC) class II molecules, costimulatory molecules B7/BB1, heat stable antigen, intracellular adhesion molecule 1, and efficient antigen-presenting ability. Granulocyte/macrophage colony-stimulating factor (GM-CSF) proved to be effective in increasing MHC class II molecule expression and in enhancing presentation of native protein antigens. In comparison with macrophages, CB1 dendritic cells did not exhibit phagocytic and chemotactic activity in response to various stimuli and lipopolysaccharide activation was ineffective in inducing tumor necrosis factor alpha or interleukin 1 beta production. CB1 cells, pulsed with haptens in vitro and injected into naive mice were able to induce delayed-type hypersensitivity responses, further increased with pretreatment with GM-CSF, indicating that these cells may represent an immature, rather than a mature DC. The ability of CB1 to prime T cells in vivo could provide a tool to design novel immunization strategies.


Blood ◽  
2004 ◽  
Vol 104 (9) ◽  
pp. 2794-2800 ◽  
Author(s):  
Terry J. Fry ◽  
Manoj Sinha ◽  
Matthew Milliron ◽  
Yu-Waye Chu ◽  
Veena Kapoor ◽  
...  

Abstract Despite recent progress in our understanding of the biology of T-cell homeostasis, clinically available therapies to substantially improve immune reconstitution in patients sustaining T-cell depletion are lacking. T cells are regenerated via a dynamic interplay between thymopoiesis and thymic-independent homeostatic peripheral expansion (HPE). Using athymic mice subjected to T-cell depletion, we observed that HPE is critically dependent on dendritic cells (DCs) for presentation of antigen, raising the possibility that the availability of DCs might be limiting in vivo for HPE to occur efficiently. Indeed, flt3 ligand (flt3L) treatment of athymic mice subjected to T-cell depletion (without DC depletion) substantially enhanced HPE and improved immune competence. Following bone marrow transplantation (BMT) in athymic hosts, both dendritic cells and T cells were profoundly depleted and flt3L therapy restored DC numbers and enhanced HPE. In addition, thymus-bearing BMT recipients treated with flt3L regenerated increased numbers of thymic-dependent progeny with increased numbers of T-cell receptor excision circle (TREC)-positive T cells, indicating increased thymopoiesis. Therefore, flt3L is a potent immunorestorative agent that enhances both thymic-dependent and thymic-independent pathways of T-cell regeneration. (Blood. 2004;104:2794-2800)


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ellen Van Gulck ◽  
Nathalie Cools ◽  
Derek Atkinson ◽  
Lotte Bracke ◽  
Katleen Vereecken ◽  
...  

A variety of immune-based therapies has been developed in order to boost or induce protective CD8+T cell responses in order to control HIV replication. Since dendritic cells (DCs) are professional antigen-presenting cells (APCs) with the unique capability to stimulate naïve T cells into effector T cells, their use for the induction of HIV-specific immune responses has been studied intensively. In the present study we investigated whether modulation of the activation state of DCs electroporated with consensus codon-optimized HxB2gagmRNA enhances their capacity to induce HIVgag-specific T cell responses. To this end, mature DCs were (i) co-electroporated with mRNA encoding interleukin (IL)-12p70 mRNA, or (ii) activated with a cytokine cocktail consisting of R848 and interferon (IFN)-γ. Our results confirm the ability of HxB2gag-expressing DCs to expand functional HIV-specific CD8+T cells. However, although most of the patients had detectablegag-specific CD8+T cell responses, no significant differences in the level of expansion of functional CD8+T cells could be demonstrated when comparing conventional or immune-modulated DCs expressing IL-12p70. This result which goes against expectation may lead to a re-evaluation of the need for IL-12 expression by DCs in order to improve T-cell responses in HIV-1-infected individuals.


Sign in / Sign up

Export Citation Format

Share Document