scholarly journals Inhibition of L-Deleted Foot-and-Mouth Disease Virus Replication by Alpha/Beta Interferon Involves Double-Stranded RNA-Dependent Protein Kinase

2001 ◽  
Vol 75 (12) ◽  
pp. 5498-5503 ◽  
Author(s):  
Jarasvech Chinsangaram ◽  
Marla Koster ◽  
Marvin J. Grubman

ABSTRACT We previously demonstrated that the ability of foot-and-mouth disease virus (FMDV) to form plaques in cell culture is associated with the suppression of alpha/beta interferon (IFN-α/β). In the present study, we used Escherichia coli-expressed porcine and bovine IFN-α or -β individually to demonstrate that each was equally effective in inhibiting FMDV replication. The block in FMDV replication appeared to be at the level of protein translation, suggesting a role for double-stranded RNA-dependent protein kinase (PKR). In support of these findings, treatment of porcine and bovine cells with 2-aminopurine, an inhibitor of PKR, increased the yield of virus 8.8- and 11.2-fold, respectively, compared to that in untreated infected cells. In addition, results of FMDV infection in mouse embryonic fibroblast cells derived from gene knockout mice lacking the gene for RNase L−/− or PKR−/− or both indicated an important role for PKR in the inhibition of FMDV replication.

1999 ◽  
Vol 73 (12) ◽  
pp. 9891-9898 ◽  
Author(s):  
Jarasvech Chinsangaram ◽  
Maria E. Piccone ◽  
Marvin J. Grubman

ABSTRACT A genetic variant of foot-and-mouth disease virus lacking the leader proteinase coding region (A12-LLV2) is attenuated in both cattle and swine and, in contrast to wild-type virus (A12-IC), does not spread from the initial site of infection after aerosol exposure of bovines. We have identified secondary cells from susceptible animals, i.e., bovine, ovine, and porcine animals, in which infection with A12-LLV2, in contrast to A12-IC infection, does not produce plaques; this result indicates that this virus cannot spread from the site of initial infection to neighboring cells. Nevertheless, A12-LLV2 can infect these cells, but cytopathic effects and virus yields are significantly reduced compared to those seen with A12-IC infection. Reverse transcription-PCR analysis demonstrates that both A12-LLV2 and A12-IC induce the production of alpha/beta interferon (IFN-α/β) mRNA in host cells. However, only supernatants from A12-LLV2-infected cells have significant antiviral activity. The antiviral activity in supernatants from A12-LLV2-infected embryonic bovine kidney cells is IFN-α/β specific, as assayed with mouse embryonic fibroblast cells with or without IFN-α/β receptors. The results obtained with cell cultures demonstrate that the ability of A12-IC to form plaques is associated with the suppression of IFN-α/β expression and suggest a role for this host factor in the inability of A12-LLV2 to spread and cause disease in susceptible animals.


2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Wei Zhang ◽  
Fan Yang ◽  
Zixiang Zhu ◽  
Yang Yang ◽  
Zhifang Wang ◽  
...  

ABSTRACTDnaJ heat shock protein family (Hsp40) member A3 (DNAJA3) plays an important role in viral infections. However, the role of DNAJA3 in replication of foot-and-mouth-disease virus (FMDV) remains unknown. In this study, DNAJA3, a novel binding partner of VP1, was identified using yeast two-hybrid screening. The DNAJA3-VP1 interaction was further confirmed by coimmunoprecipitation and colocalization in FMDV-infected cells. The J domain of DNAJA3 (amino acids 1 to 168) and the lysine at position 208 (K208) of VP1 were shown to be critical for the DNAJA3-VP1 interaction. Overexpression of DNAJA3 dramatically dampened FMDV replication, whereas loss of function of DNAJA3 elicited opposing effects against FMDV replication. Mechanistical study demonstrated that K208 of VP1 was critical for reducing virus titer caused by DNAJA3 using K208A mutant virus. DNAJA3 induced lysosomal degradation of VP1 by interacting with LC3 to enhance the activation of lysosomal pathway. Meanwhile, we discovered that VP1 suppressed the beta interferon (IFN-β) signaling pathway by inhibiting the phosphorylation, dimerization, and nuclear translocation of IRF3. This inhibitory effect was considerably boosted in DNAJA3-knockout cells. In contrast, overexpression of DNAJA3 markedly attenuated VP1-mediated suppression on the IFN-β signaling pathway. Poly(I⋅C)-induced phosphorylation of IRF3 was also decreased in DNAJA3-knockout cells compared to that in the DNAJA3-WT cells. In conclusion, our study described a novel role for DNAJA3 in the host’s antiviral response by inducing the lysosomal degradation of VP1 and attenuating the VP1-induced suppressive effect on the IFN-β signaling pathway.IMPORTANCEThis study pioneeringly determined the antiviral role of DNAJA3 in FMDV. DNAJA3 was found to interact with FMDV VP1 and trigger its degradation via the lysosomal pathway. In addition, this study is also the first to clarify the mechanism by which VP1 suppressed IFN-β signaling pathway by inhibiting the phosphorylation, dimerization, and nuclear translocation of IRF3. Moreover, DNAJA3 significantly abrogated VP1-induced inhibitive effect on the IFN-β signaling pathway. These data suggested that DNAJA3 plays an important antiviral role against FMDV by both degrading VP1 and restoring of IFN-β signaling pathway.


2006 ◽  
Vol 81 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Zongdi Feng ◽  
Melissa Cerveny ◽  
Zhipeng Yan ◽  
Bin He

ABSTRACT The VP35 protein of Ebola virus is a viral antagonist of interferon. It acts to block virus or double-stranded RNA-mediated activation of interferon regulatory factor 3, a transcription factor that facilitates the expression of interferon and interferon-stimulated genes. In this report, we show that the VP35 protein is also able to inhibit the antiviral response induced by alpha interferon. This depends on the VP35 function that interferes with the pathway regulated by double-stranded RNA-dependent protein kinase PKR. When expressed in a heterologous system, the VP35 protein enhanced viral polypeptide synthesis and growth in Vero cells pretreated with alpha/beta interferon, displaying an interferon-resistant phenotype. In correlation, phosphorylation of PKR and eIF-2α was suppressed in cells expressing the VP35 protein. This activity of the VP35 protein was required for efficient viral replication in PKR+/+ but not PKR−/− mouse embryo fibroblasts. Furthermore, VP35 appears to be a RNA binding protein. Notably, a deletion of amino acids 1 to 200, but not R312A substitution in the RNA binding motif, abolished the ability of the VP35 protein to confer viral resistance to interferon. However, the R312A substitution rendered the VP35 protein unable to inhibit the induction of the beta interferon promoter mediated by virus infection. Together, these results show that the VP35 protein targets multiple pathways of the interferon system.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Linda J. Visser ◽  
Gisselle N. Medina ◽  
Huib H. Rabouw ◽  
Raoul J. de Groot ◽  
Martijn A. Langereis ◽  
...  

ABSTRACTLike other viruses, the picornavirus foot-and-mouth disease virus (FMDV; genusAphthovirus), one of the most notorious pathogens in the global livestock industry, needs to navigate antiviral host responses to establish an infection. There is substantial insight into how FMDV suppresses the type I interferon (IFN) response, but it is largely unknown whether and how FMDV modulates the integrated stress response. Here, we show that the stress response is suppressed during FMDV infection. Using a chimeric recombinant encephalomyocarditis virus (EMCV), in which we functionally replaced the endogenous stress response antagonist by FMDV leader protease (Lpro) or 3Cpro, we demonstrate an essential role for Lproin suppressing stress granule (SG) formation. Consistently, infection with a recombinant FMDV lacking Lproresulted in SG formation. Additionally, we show that Lprocleaves the known SG scaffold proteins G3BP1 and G3BP2 but not TIA-1. We demonstrate that the closely related equine rhinitis A virus (ERAV) Lproalso cleaves G3BP1 and G3BP2 and also suppresses SG formation, indicating that these abilities are conserved among aphthoviruses. Neither FMDV nor ERAV Lprointerfered with phosphorylation of RNA-dependent protein kinase (PKR) or eIF2α, indicating that Lprodoes not affect SG formation by inhibiting the PKR-triggered signaling cascade. Taken together, our data suggest that aphthoviruses actively target scaffolding proteins G3BP1 and G3BP2 and antagonize SG formation to modulate the integrated stress response.IMPORTANCEThe picornavirus foot-and-mouth disease virus (FMDV) is a notorious animal pathogen that puts a major economic burden on the global livestock industry. Outbreaks have significant consequences for animal health and product safety. Like many other viruses, FMDV must manipulate antiviral host responses to establish infection. Upon infection, viral double-stranded RNA (dsRNA) is detected, which results in the activation of the RNA-dependent protein kinase (PKR)-mediated stress response, leading to a stop in cellular and viral translation and the formation of stress granules (SG), which are thought to have antiviral properties. Here, we show that FMDV can suppress SG formation via its leader protease (Lpro). Simultaneously, we observed that Lprocan cleave the SG scaffolding proteins G3BP1 and G3BP2. Understanding the molecular mechanisms of the antiviral host response evasion strategies of FMDV may help to develop countermeasures to control FMDV infections in the future.


2000 ◽  
Vol 74 (20) ◽  
pp. 9580-9585 ◽  
Author(s):  
David F. Stojdl ◽  
Ninan Abraham ◽  
Shane Knowles ◽  
Ricardo Marius ◽  
Ann Brasey ◽  
...  

ABSTRACT Interferon (IFN)-induced antiviral responses are mediated through a variety of proteins, including the double-stranded RNA-dependent protein kinase PKR. Here we show that fibroblasts derived from PKR−/− mice are more permissive for vesicular stomatitis virus (VSV) infection than are wild-type fibroblasts and demonstrate a deficiency in alpha/beta-IFN-mediated protection. We further show that mice lacking PKR are extremely susceptible to intranasal VSV infection, succumbing within days after instillation with as few as 50 infectious viral particles. Again, alpha/beta-IFN was unable to rescue PKR−/− mice from VSV infection. Surprisingly, intranasally infected PKR−/− mice died not from pathology of the central nervous system but rather from acute infection of the respiratory tract, demonstrating high virus titers in the lungs compared to similarly infected wild-type animals. These results confirm the role of PKR as the major component of IFN-mediated resistance to VSV infection. Since previous reports have shown PKR to be nonessential for survival in animals challenged with encephalomyocarditis virus, influenza virus, and vaccinia virus (N. Abraham et al., J. Biol. Chem. 274:5953–5962, 1999; Y. Yang et al., EMBO J. 14:6095–6106, 1995), our findings serve to highlight the premise that host dependence on the various mediators of IFN-induced antiviral defenses is pathogen specific.


1995 ◽  
Vol 14 (24) ◽  
pp. 6095-6106 ◽  
Author(s):  
Y. L. Yang ◽  
L. F. Reis ◽  
J. Pavlovic ◽  
A. Aguzzi ◽  
R. Schäfer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document