scholarly journals Virus-Cell Interactions Regulating Induction of Tumor Necrosis Factor Alpha Production in Macrophages Infected with Herpes Simplex Virus

2001 ◽  
Vol 75 (21) ◽  
pp. 10170-10178 ◽  
Author(s):  
Søren R. Paludan ◽  
Søren C. Mogensen

ABSTRACT Macrophages respond to virus infections by rapidly secreting proinflammatory cytokines, which play an important role in the first line of defense. Tumor necrosis factor alpha (TNF-α) is one of the major macrophage-produced cytokines. In this study we have investigated the virus-cell interactions responsible for induction of TNF-α expression in herpes simplex virus (HSV)-infected macrophages. Both HSV type 1 (HSV-1) and HSV-2 induced TNF-α expression in macrophages activated with gamma interferon (IFN-γ). This induction was to some extent sensitive to UV treatment of the virus. Virus particles unable to enter the cells displayed reduced capacity to stimulate TNF-α expression but retained a significant portion which was abolished by HSV-specific antibodies. Recombinant HSV-1 glycoprotein D was able to trigger TNF-α secretion in concert with IFN-γ. Sugar moieties of HSV glycoproteins have been reported to be involved in induction of IFN-α but did not contribute to TNF-α expression in macrophages. Moreover, the entry-dependent portion of the TNF-α induction was investigated with HSV-1 mutants and found to be independent of the tegument proteins VP16 and UL13 and partly dependent on nuclear translocation of the viral DNA. Finally, we found that macrophages expressing an inactive mutant of the double-stranded RNA (dsRNA)-activated protein kinase (PKR) produced less TNF-α in response to infectious HSV infection than the empty-vector control cell line but displayed the same responsiveness to UV-inactivated virus. These results indicate that HSV induces TNF-α expression in macrophages through mechanisms involving (i) viral glycoproteins, (ii) early postentry events occurring prior to nuclear translocation of viral DNA, and (iii) viral dsRNA-PKR.

2013 ◽  
Vol 87 (23) ◽  
pp. 12935-12948 ◽  
Author(s):  
Jie Zhang ◽  
Kezhen Wang ◽  
Shuai Wang ◽  
Chunfu Zheng

NF-κB plays central roles in regulation of diverse biological processes, including innate and adaptive immunity and inflammation. HSV-1 is the archetypal member of the alphaherpesviruses, with a large genome encoding over 80 viral proteins, many of which are involved in virus-host interactions and show immune modulatory capabilities. In this study, we demonstrated that the HSV-1 ICP0 protein, a viral E3 ubiquitin ligase, was shown to significantly suppress tumor necrosis factor alpha (TNF-α)-mediated NF-κB activation. ICP0 was demonstrated to bind to the NF-κB subunits p65 and p50 by coimmunoprecipitation analysis. ICP0 bound to the Rel homology domain (RHD) of p65. Fluorescence microscopy demonstrated that ICP0 abolished nuclear translocation of p65 upon TNF-α stimulation. Also, ICP0 degraded p50 via its E3 ubiquitin ligase activity. The RING finger (RF) domain mutant ICP0 (ICP0-RF) lost its ability to inhibit TNF-α-mediated NF-κB activation and p65 nuclear translocation and degrade p50. Notably, the RF domain of ICP0 was sufficient to interact with p50 and abolish NF-κB reporter gene activity. Here, it is for the first time shown that HSV-1 ICP0 interacts with p65 and p50, degrades p50 through the ubiquitin-proteasome pathway, and prevents NF-κB-dependent gene expression, which may contribute to immune evasion and pathogenesis of HSV-1.


2001 ◽  
Vol 69 (5) ◽  
pp. 2847-2852 ◽  
Author(s):  
Julia Y. Lee ◽  
Kathleen E. Sullivan

ABSTRACT Lipopolysaccharide (LPS) is a very potent inducer of tumor necrosis factor alpha (TNF-α) expression from monocytes and macrophages. Another inflammatory cytokine, gamma interferon (IFN-γ), can potentiate the effects of LPS, but the mechanism is not thoroughly understood. Previous reports emphasized the ability of IFN-γ to upregulate CD14 expression (the receptor for LPS), and nearly all studies have utilized sequential stimulation with IFN-γ followed by LPS to exploit this phenomenon. This study demonstrates that IFN-γ can upregulate the effect of LPS at the level of transcription. Human monoblastic Mono-Mac-6 cells produced up to threefold-greater levels of TNF-α when simultaneously stimulated with LPS and IFN-γ compared to treatment with LPS alone. RNase protection studies showed a similar increase in RNA beginning as early as within 30 min. The synthesis of TNF-α mRNA in IFN-γ- and LPS-treated Mono-Mac-6 cells was also temporally prolonged even though the message turnover rate was identical to that seen in LPS stimulated cells. The modulatory effect of IFN-γ may be mediated by Jak2.


2005 ◽  
Vol 73 (2) ◽  
pp. 849-858 ◽  
Author(s):  
Simone Korten ◽  
Richard J. Anderson ◽  
Carolyn M. Hannan ◽  
Eric G. Sheu ◽  
Robert Sinden ◽  
...  

ABSTRACT Understanding the protective mechanism in the liver induced by recombinant vaccines against the pre-erythrocytic stages of malaria is important for vaccine development. Most studies in mice have focused on splenic and peripheral blood T cells and identified gamma interferon (IFN-γ)-producing CD8+ T cells as correlates of protection, which can be induced by prime-boost vaccination with recombinant poxviruses. Invariant natural killer T (Vα14iNKT) cells can also protect against liver stage malaria, when activated, and are abundant in the liver. Since poxviruses have nonspecific immunomodulating effects, which are incompletely understood, we investigated whether recombinant poxviruses affect the protective properties of hepatic Vα14iNKT cells and thus vaccine efficacy. We show that intradermal vaccination with recombinant poxviruses activated Vα14iNKT cells and NK cells in the livers of BALB/c mice while inducing IFN-γ- and tumor necrosis factor alpha (TNF-α)-producing pre-erythrocytic stage antigen-specific CD8+ T cells. Greater numbers of hepatic Vα14iNKT cells secreted interleukin-4 than IFN-γ. Vaccinated Vα14iNKT-cell-deficient mice had lower, but still protective levels of hepatic and splenic IFN-γ+ and TNF-α+ CD8+ T cells and better protection rates later after challenge with Plasmodium berghei sporozoites. Therefore, vaccine-activated hepatic Vα14iNKT cells help in generating specific T cells but are not required for protection induced by recombinant poxviruses. Furthermore, double-positive INF-γ+/TNF-α+ CD8+ T cells were enriched in protected livers, suggesting that cells expressing both of these cytokines may be most relevant for protection.


Author(s):  
NELLY MARISSA ◽  
NUR RAMADHAN ◽  
SARI HANUM ◽  
MARLINDA ◽  
EKA FITRIA ◽  
...  

Objective: This study aimed to determine the decreased immune response of tuberculosis (TB) with diabetes mellitus (DM) patients. Methods: A total of 105 TB patients who were undergoing treatment at health centers and hospitals in Banda Aceh and Aceh Besar were included in this study. Data collection was carried out by interviewed to obtained demographic and respondent categories based on the diagnosis. Measurements of height and weight were also conducted to obtain body mass index data. 5 mL peripheral blood was taken from each respondent group into a TB with DM (TB+DM) and TB without DM (TB-DM). The blood tested usage tumor necrosis factor-alpha (TNF-α) level using enzyme-linked immunosorbent assay and interferon-gamma (IFN-γ) using IFN-γ release assay. Results: The average concentration of both TNF-α and IFN-γ was higher in TB-DM group (TNF-a 5.2 pg/mL; IFN-g 1.5 IU/mL) than in TB+DM group (TNF-a 2.06 pg/mL; IFN-g 2.86 IU/mL). There were significant differences in TNF-α between the two groups but no significant differences in IFN-γ protein concentration. Conclusion: The immune response of TB patients with DM symptoms was markedly reduced by the decreased expression of TNF-α and IFN-γ.


2005 ◽  
Vol 73 (4) ◽  
pp. 2175-2183 ◽  
Author(s):  
Anton Pernthaner ◽  
Sally-Ann Cole ◽  
Lilian Morrison ◽  
Wayne R. Hein

ABSTRACT Cytokine gene expression in cells migrating in afferent and efferent intestinal lymph was monitored for extended time periods in individual sheep experimentally infected with the nematode Trichostrongylus colubriformis. Animals from stable selection lines with increased levels of either genetic resistance (R) or susceptibility (S) to nematode infection were used. Genes for interleukin-5 (IL-5), IL-13, and tumor necrosis factor alpha (TNF-α), but not for IL-4, IL-10, or gamma interferon (IFN-γ), were consistently expressed at higher levels in both afferent and efferent lymph cells of R sheep than in S sheep. However, only minor differences were observed in the surface phenotypes and antigenic and mitogenic responsiveness of cells in intestinal lymph between animals from the two selection lines. The IL-4 and IL-10 genes were expressed at higher levels in afferent lymph cells than in efferent lymph cells throughout the course of the nematode infection in animals of both genotypes, while the proinflammatory TNF-α gene was relatively highly expressed in both lymph types. These relationships notwithstanding, expression of the IL-10 and TNF-α genes declined significantly in afferent lymph cells but not in efferent lymph cells during infection. Collectively, the results showed that R-line sheep developed a strong polarization toward a Th2-type cytokine profile in immune cells migrating in lymph from sites where the immune response to nematodes was initiated, although the IFN-γ gene was also expressed at moderate levels. Genes or alleles that predispose an animal to develop this type of response appear to have segregated with the R selection line and may contribute to the increased resistance of these animals.


2003 ◽  
Vol 10 (5) ◽  
pp. 960-966 ◽  
Author(s):  
W. R. Waters ◽  
M. V. Palmer ◽  
D. L. Whipple ◽  
M. P. Carlson ◽  
B. J. Nonnecke

ABSTRACT Bovine tuberculosis in the United States has proven costly to cattle producers as well as to government regulatory agencies. While in vivo responsiveness to mycobacterial antigens is the current standard for the diagnosis of tuberculosis, in vitro assays are gaining acceptance, especially as ancillary or complementary tests. To evaluate in vitro indices of cellular sensitization, antigen-induced gamma interferon (IFN-γ), nitric oxide (NO), and tumor necrosis factor alpha (TNF-α) responses by blood mononuclear cells from Mycobacterium bovis-infected cattle were quantified and compared. Using an aerosol model of infection, two doses of each of two strains of M. bovis (95-1315 and HC-2045T) were used to induce a range of IFN-γ, NO, and TNF-α responses. Infection-specific increases in NO, but not in IFN-γ or TNF-α, were detected in nonstimulated cultures at 48 h, a finding that is indicative of nonspecific activation and spontaneous release of NO. The infective dose of M. bovis organisms also influenced responses. At 34 days postinfection, IFN-γ, NO, and TNF-α responses in antigen-stimulated cells from cattle receiving 105 CFU of M. bovis organisms were greater than responses of cells from cattle infected with 103 CFU of M. bovis organisms. The NO response, but not the IFN-γ and TNF-α responses, was influenced by infective strains of M. bovis. The TNF-α, NO, and IFN-γ responses followed similar kinetics, with strong positive associations among the three readouts. Overall, these findings indicate that NO and TNF-α, like IFN-γ, may prove useful as indices for the diagnosis of bovine tuberculosis.


2003 ◽  
Vol 10 (1) ◽  
pp. 44-52 ◽  
Author(s):  
John A. Christopherson ◽  
Erik L. Munson ◽  
Douglas M. England ◽  
Cindy L. Croke ◽  
Monica C. Remington ◽  
...  

ABSTRACT We found that Borrelia burgdorferi-vaccinated gamma interferon-deficient (IFN-γ0) mice challenged with B. burgdorferi developed prominent chronic destructive osteoarthropathy. When these mice were treated with anti-tumor necrosis factor alpha (TNF-α) antibody, the severity of the destructive osteoarthritis was enhanced and affected the mobility of the animals. In addition, extensive swelling of the hind paws occurred. In contrast, treatment of B. burgdorferi-vaccinated, challenged IFN-γ0 mice with recombinant TNF-α (rTNF-α) inhibited the development of arthritis, including swelling of the hind paws. Moreover, treatment of vaccinated, challenged IFN-γ0 mice with anti-TNF-α inhibited fourfold the production of an antibody that kills B. burgdorferi, while treatment of vaccinated, challenged IFN-γ0 mice with rTNF-α slightly elevated the level of the borreliacidal antibody. These results suggest that the level of TNF-α directly or indirectly regulates the production of borreliacidal antibody and the development of vaccine-induced destructive Lyme osteoarthritis. Studies are in progress to determine the mechanism by which TNF-α-dependent cytokines generate the destructive arthritis.


2002 ◽  
Vol 76 (1) ◽  
pp. 280-291 ◽  
Author(s):  
Anastasia Bachmann ◽  
Brigitte Hanke ◽  
Rainer Zawatzky ◽  
Ubaldo Soto ◽  
Jan van Riggelen ◽  
...  

ABSTRACT In the present study we show that malignant human papillomavirus (HPV)-positive cells lost their ability to synthesize endogenous beta interferon (IFN-β) upon tumor necrosis factor alpha (TNF-α) treatment. IFN-β transcription, however, was reinducible in nonmalignant HPV-positive cells, which was confirmed in functional protection assays against encephalomyocarditis virus or vesicular stomatitis virus infections. Addition of neutralizing antibodies against IFN-β blocked the antiviral effect, excluding the possibility that other IFN types were involved. Conversely, both malignant and immortalized cells could be protected against viral cytolysis when either IFN-β, IFN-α, or IFN-γ was added exogenously. This indicates that only the cross talk between TNF-α and the IFN-β pathways, and not IFN-α/β and IFN-γ signaling in general, is perturbed in cervical carcinoma cells. Notably, full virus protection was restricted exclusively to nonmalignant cells, indicating that the antiviral effect correlates with the growth-inhibitory and virus-suppressive properties of TNF-α. The IFN-regulatory factors IRF-1 and p48 (ISGF3γ) emerged as key regulatory molecules in the differential IFN-β response, since their transcription was either absent or only inefficiently enhanced in tumorigenic cells upon treatment with TNF-α. Inducibility of both genes, however, became reestablished in cervical carcinoma cells, which were complemented to nontumorigenicity after somatic cell hybridization. Complementation was paralleled by the entire reconstitution of cytokine-mediated IFN-β expression and the ability of TNF-α to exert an antiviral state. In contrast, under conditions where tumor suppression was not accomplished upon somatic cell hybridization, neither expression of IRF-1, p48, and IFN-β nor antiviral activity could be restored.


2002 ◽  
Vol 70 (6) ◽  
pp. 2959-2964 ◽  
Author(s):  
Amy C. Herring ◽  
John Lee ◽  
Roderick A. McDonald ◽  
Galen B. Toews ◽  
Gary B. Huffnagle

ABSTRACT The development of T1-cell-mediated immunity is required to clear a pulmonary Cryptococcus neoformans infection. The objective of these studies was to determine the mechanism by which tumor necrosis factor alpha (TNF-α) augments the development of pulmonary T1 immunity to C. neoformans infection. TNF-α expression was detected in lavage sample cells at days 2, 3, and 7 following C. neoformans infection. The numbers of CFU in the lung were not different between control and anti-TNF-α-treated mice at any time point examined during the afferent phase of the response (days 0 to 7). However, neutralization of TNF-α prevented the initiation of pulmonary clearance during the efferent phase of the response (day 14). Administration of anti-TNF-α monoclonal antibody (day 0) diminished the lung levels of TNF-α, interleukin-12 (IL-12), and gamma interferon (IFN-γ) induced by C. neoformans at day 7 postinfection. Neutralization of TNF-α (day 0) also altered the IFN-γ/IL-4 ratio in the lung-associated lymph nodes at day 7 following C. neoformans infection. Anti-TNF-α-treated mice developed a pulmonary eosinophilia at day 14 postinfection. Consistent with the pulmonary eosinophilia, anti-TNF-α-treated mice exhibited elevated serum immunoglobulin E and inhibition of the anticryptococcal delayed-type hypersensitivity response, indicating a shift toward a T2 response. Neutralization of IL-12 also prevented lung leukocyte production of IFN-γ in response to the infection. These findings demonstrate that afferent-phase TNF-α production is essential for the induction of IL-12 and IFN-γ and neutralization of early TNF-α results in a T2 shift of the T1/T2 balance of antifungal immunity.


2001 ◽  
Vol 75 (13) ◽  
pp. 5930-5938 ◽  
Author(s):  
Mary Lou Jelachich ◽  
Howard L. Lipton

ABSTRACT Infection of susceptible mice with the low-neurovirulence Theiler's murine encephalomyelitis virus strain BeAn results in an inflammatory demyelinating disease similar to multiple sclerosis. While the majority of virus antigen is detected in central nervous system macrophages (Mφs), few infiltrating Mφs are infected. We used the myelomonocytic precursor M1 cell line to study BeAn virus-Mφ interactions in vitro to elucidate mechanisms for restricted virus expression. We have shown that restricted BeAn infection of M1 cells differentiated in vitro (M1-D) results in apoptosis. In this study, BeAn infection of gamma interferon (IFN-γ)-activated M1-D cells also resulted in apoptosis but with no evidence of virus replication or protein expression. RNase protection assays of M1-D cellular RNA revealed up-regulation of Fas and the p55 chain of the tumor necrosis factor alpha (TNF-α) receptor transcripts with IFN-γ activation. BeAn infection of activated cells resulted in increased caspase 8 mRNA transcripts and the appearance of TNF-α-related apoptosis-inducing ligand (TRAIL) 4 h postinfection. Both unactivated and activated M1-D cells expressed TRAIL receptors (R1 and R2), but only activated cells were killed by soluble TRAIL. Activated cells were also susceptible to soluble FasL- and TNF-α-induced apoptosis. The data suggest that IFN-γ-activated M1-D cell death receptors become susceptible to their ligands and that the cells respond to BeAn virus infection by producing the ligands TNF-α and TRAIL to kill the susceptible cells. Unactivated cells are not susceptible to FasL or TRAIL and require virus replication to initiate apoptosis. Therefore, two mechanisms of apoptosis induction can be triggered by BeAn infection: an intrinsic pathway requiring virus replication and an extrinsic pathway signaling through the death receptors.


Sign in / Sign up

Export Citation Format

Share Document