scholarly journals Persistent and Transient Replication of Full-Length Hepatitis C Virus Genomes in Cell Culture

2002 ◽  
Vol 76 (8) ◽  
pp. 4008-4021 ◽  
Author(s):  
Thomas Pietschmann ◽  
Volker Lohmann ◽  
Artur Kaul ◽  
Nicole Krieger ◽  
Gabriele Rinck ◽  
...  

ABSTRACT The recently developed subgenomic hepatitis C virus (HCV) replicons were limited by the fact that the sequence encoding the structural proteins was missing. Therefore, important information about a possible influence of these proteins on replication and pathogenesis and about the mechanism of virus formation could not be obtained. Taking advantage of three cell culture-adaptive mutations that enhance RNA replication synergistically, we generated selectable full-length HCV genomes that amplify to high levels in the human hepatoma cell line Huh-7 and can be stably propagated for more than 6 months. The structural proteins are efficiently expressed, with the viral glycoproteins E1 and E2 forming heterodimers which are stable under nondenaturing conditions. No disulfide-linked glycoprotein aggregates were observed, suggesting that the envelope proteins fold productively. Electron microscopy studies indicate that cell lines harboring these full-length HCV RNAs contain lipid droplets. The majority of the core protein was found on the surfaces of these structures, whereas the glycoproteins appear to localize to the endoplasmic reticulum and cis-Golgi compartments. In agreement with this distribution, no endoglycosidase H-resistant forms of these proteins were detectable. In a search for the production of viral particles, we noticed that these cells release substantial amounts of nuclease-resistant HCV RNA-containing structures with a buoyant density of 1.04 to 1.1 g/ml in iodixanol gradients. The same observation was made in transient-replication assays using an authentic highly adapted full-length HCV genome that lacks heterologous sequences. However, the fact that comparable amounts of such RNA-containing structures were found in the supernatant of cells carrying subgenomic replicons demonstrates a nonspecific release independent of the presence of the structural proteins. These results suggest that Huh-7 cells lack host cell factors that are important for virus particle assembly and/or release.

2005 ◽  
Vol 79 (21) ◽  
pp. 13778-13793 ◽  
Author(s):  
Marc P. Windisch ◽  
Michael Frese ◽  
Artur Kaul ◽  
Martin Trippler ◽  
Volker Lohmann ◽  
...  

ABSTRACT The Hepatitis C virus (HCV), a member of the family Flaviviridae, is a major cause of chronic liver disease. Patients are currently treated with alpha interferon (IFN-α) that is given alone or in combination with ribavirin. Unfortunately, this treatment is ineffective in eliminating the virus in a large proportion of individuals. IFN-induced antiviral activities have been intensively studied in the HCV replicon system. It was found that both IFN-α and IFN-γ inhibit HCV replicons, but the underlying mechanisms have not yet been identified. Of note is that nearly all of these studies were performed with the human hepatoma cell line Huh-7. Here, we report that genotypes 1b and 2a replicons also replicate in the human hepatoblastoma cell line HuH6. Similar to what has been described for Huh-7 cells, we observed that efficient HCV replication in HuH6 cells depends on the presence of cell culture-adaptive mutations and the permissiveness of the host cell. However, three major differences exist: in HuH6 cells, viral replication is (i) independent from ongoing cell proliferation, (ii) less sensitive to certain antiviral compounds, and (iii) highly resistant to IFN-γ. The latter is not due to a general defect in IFN signaling, as IFN-γ induces the nuclear translocation of signal transducer and activator of transcription 1 (STAT1), the enhanced transcription of several IFN-regulated genes, and the inhibition of unrelated viruses such as influenza A virus and Semliki Forest virus. Taken together, the results establish HuH6 replicon cells as a valuable tool for IFN studies and for the evaluation of antiviral compounds.


2013 ◽  
Vol 94 (10) ◽  
pp. 2221-2235 ◽  
Author(s):  
Andrea Galli ◽  
Troels K. H. Scheel ◽  
Jannick C. Prentoe ◽  
Lotte S. Mikkelsen ◽  
Judith M. Gottwein ◽  
...  

Hepatitis C virus (HCV) is an important human pathogen infecting hepatocytes. With the advent of infectious cell culture systems, the HCV particle assembly and release processes are finally being uncovered. The HCV core and NS5A proteins co-localize on cytoplasmic lipid droplets (cLDs) or on the endoplasmic reticulum (ER) at different stages of particle assembly. Current knowledge on assembly and release is primarily based on studies in genotype 2a cell culture systems; however, given the high genetic heterogeneity of HCV, variations might exist among genotypes. Here, we developed novel HCV strain JFH1-based recombinants expressing core–NS2 and NS5A from genotypes 1–7, and analysed core and NS5A co-localization in infected cells. Huh7.5 cells were transfected with RNA of core–NS2/NS5A recombinants and putative adaptive mutations were analysed by reverse genetics. Adapted core–NS2/NS5A recombinants produced infectivity titres of 102.5–104.5 f.f.u. ml−1. Co-localization analysis demonstrated that the core and NS5A proteins from all genotypes co-localized extensively, and there was no significant difference in protein co-localization among genotypes. In addition, we found that the core and NS5A proteins were highly associated with cLDs at 12 h post-infection but became mostly ER associated at later stages. Finally, we found that different genotypes showed varying levels of core/cLD co-localization, with a possible effect on viral assembly/release. In summary, we developed a panel of HCV genotype 1–7 core–NS2/NS5A recombinants producing infectious virus, and an immunostaining protocol detecting the core and NS5A proteins from seven different genotypes. These systems will allow, for the first time, investigation of core/NS5A interactions during assembly and release of HCV particles of all major genotypes.


2002 ◽  
Vol 76 (24) ◽  
pp. 13001-13014 ◽  
Author(s):  
Keril J. Blight ◽  
Jane A. McKeating ◽  
Charles M. Rice

ABSTRACT Hepatitis C virus (HCV) replication appears to be restricted to the human hepatoma cell line Huh-7, indicating that a favorable cellular environment exists within these cells. Although adaptive mutations in the HCV nonstructural proteins typically enhance the replicative capacity of subgenomic replicons in Huh-7 cells, replication can only be detected in a subpopulation of these cells. Here we show that self-replicating subgenomic RNA could be eliminated from Huh-7 clones by prolonged treatment with alpha interferon (IFN-α) and that a higher frequency of cured cells could support both subgenomic and full-length HCV replication. The increased permissiveness of one of the cured cell lines allowed us to readily detect HCV RNA and antigens early after RNA transfection, eliminating the need for selection of replication-positive cells. We also demonstrate that a single amino acid substitution in NS5A is sufficient for establishing HCV replication in a majority of cured cells and that the major phosphate acceptor site of subtype 1b NS5A is not essential for HCV replication.


2003 ◽  
Vol 77 (5) ◽  
pp. 3007-3019 ◽  
Author(s):  
Volker Lohmann ◽  
Sandra Hoffmann ◽  
Ulrike Herian ◽  
Francois Penin ◽  
Ralf Bartenschlager

ABSTRACT Studies on the replication of hepatitis C virus (HCV) have been facilitated by the development of selectable subgenomic replicons replicating in the human hepatoma cell line Huh-7 at a surprisingly high level. Analysis of the replicon population in selected cells revealed the occurrence of cell culture-adaptive mutations that enhance RNA replication substantially. To gain a better understanding of HCV cell culture adaptation, we characterized conserved mutations identified by sequence analysis of 26 independent replicon cell clones for their effect on RNA replication. Mutations enhancing replication were found in nearly every nonstructural (NS) protein, and they could be subdivided into at least two groups by their effect on replication efficiency and cooperativity: (i) mutations in NS3 with a low impact on replication but that enhanced replication cooperatively when combined with highly adaptive mutations and (ii) mutations in NS4B, -5A, and -5B, causing a strong increase in replication but being incompatible with each other. In addition to adaptive mutations, we found that the host cell plays an equally important role for efficient RNA replication. We tested several passages of the same Huh-7 cell line and found up to 100-fold differences in their ability to support replicon amplification. These differences were not due to variations in internal ribosome entry site-dependent translation or RNA degradation. In a search for cellular factor(s) that might be responsible for the different levels of permissiveness of Huh-7 cells, we found that replication efficiency decreased with increasing amounts of transfected replicon RNA, indicating that viral RNA or proteins are cytopathic or that host cell factors in Huh-7 cells limit RNA amplification. In summary, these data show that the efficiency of HCV replication in cell culture is determined both by adaptation of the viral sequence and by the host cell itself.


2003 ◽  
Vol 77 (5) ◽  
pp. 3181-3190 ◽  
Author(s):  
Keril J. Blight ◽  
Jane A. McKeating ◽  
Joseph Marcotrigiano ◽  
Charles M. Rice

ABSTRACT Hepatitis C virus (HCV) genotype 1 (subtypes 1a and 1b) is responsible for the majority of treatment-resistant liver disease worldwide. Thus far, efficient HCV RNA replication has been observed only for subgenomic and full-length RNAs derived from genotype 1b isolates. Here, we report the establishment of efficient RNA replication systems for genotype 1a strain H77. Replication of subgenomic and full-length H77 1a RNAs required the highly permissive Huh-7.5 hepatoma subline and adaptive amino acid substitutions in both NS3 and NS5A. Replication could be detected by RNA quantification, fluorescence-activated cell sorting, and metabolic labeling of HCV-specific proteins. Replication efficiencies were similar for subgenomic and full-length RNAs and were most efficient for HCV RNAs lacking heterologous RNA elements. Interestingly, both subtype 1a and 1b NS3 adaptive mutations are surface exposed and present on only one face of the NS3 structure. The cell culture-adapted subtype 1a replicons should be useful for basic replication studies and for antiviral development. These results are also encouraging for the development of adapted replicons for the remaining HCV genotypes.


2010 ◽  
Vol 84 (21) ◽  
pp. 10999-11009 ◽  
Author(s):  
Pablo Gastaminza ◽  
Kelly A. Dryden ◽  
Bryan Boyd ◽  
Malcolm R. Wood ◽  
Mansun Law ◽  
...  

ABSTRACT We analyzed the biochemical and ultrastructural properties of hepatitis C virus (HCV) particles produced in cell culture. Negative-stain electron microscopy revealed that the particles were spherical (∼40- to 75-nm diameter) and pleomorphic and that some of them contain HCV E2 protein and apolipoprotein E on their surfaces. Electron cryomicroscopy revealed two major particle populations of ∼60 and ∼45 nm in diameter. The ∼60-nm particles were characterized by a membrane bilayer (presumably an envelope) that is spatially separated from an internal structure (presumably a capsid), and they were enriched in fractions that displayed a high infectivity-to-HCV RNA ratio. The ∼45-nm particles lacked a membrane bilayer and displayed a higher buoyant density and a lower infectivity-to-HCV RNA ratio. We also observed a minor population of very-low-density, >100-nm-diameter vesicular particles that resemble exosomes. This study provides low-resolution ultrastructural information of particle populations displaying differential biophysical properties and specific infectivity. Correlative analysis of the abundance of the different particle populations with infectivity, HCV RNA, and viral antigens suggests that infectious particles are likely to be present in the large ∼60-nm HCV particle populations displaying a visible bilayer. Our study constitutes an initial approach toward understanding the structural characteristics of infectious HCV particles.


2004 ◽  
Vol 78 (17) ◽  
pp. 9257-9269 ◽  
Author(s):  
Kevin C. Klein ◽  
Stephen J. Polyak ◽  
Jaisri R. Lingappa

ABSTRACT The assembly of hepatitis C virus (HCV) is poorly understood, largely due to the lack of mammalian cell culture systems that are easily manipulated and produce high titers of virus. This problem is highlighted by the inability of the recently established HCV replicon systems to support HCV capsid assembly despite high levels of structural protein synthesis. Here we demonstrate that up to 80% of HCV core protein synthesized de novo in cell-free systems containing rabbit reticulocyte lysate or wheat germ extracts assembles into HCV capsids. This contrasts with standard primate cell culture systems, in which almost no core assembles into capsids. Cell-free HCV capsids, which have a sedimentation value of ≈100S, have a buoyant density (1.28 g/ml) on cesium chloride similar to that of HCV capsids from other systems. Capsids produced in cell-free systems are also indistinguishable from capsids isolated from HCV-infected patient serum when analyzed by transmission electron microscopy. Using these cell-free systems, we show that HCV capsid assembly is independent of signal sequence cleavage, is dependent on the N terminus but not the C terminus of HCV core, proceeds at very low nascent chain concentrations, is independent of intact membrane surfaces, and is partially inhibited by cultured liver cell lysates. By allowing reproducible and quantitative assessment of viral and cellular requirements for capsid formation, these cell-free systems make a mechanistic dissection of HCV capsid assembly possible.


2006 ◽  
Vol 80 (9) ◽  
pp. 4633-4639 ◽  
Author(s):  
Tatsuo Kanda ◽  
Arnab Basu ◽  
Robert Steele ◽  
Takaji Wakita ◽  
Jan S. Ryerse ◽  
...  

ABSTRACT Progress in understanding hepatitis C virus (HCV) biology has remained a challenge due to the lack of an efficient cell culture system for virus growth. In this study, we examined HCV core protein-mediated immortalized human hepatocytes (IHH) for growth of HCV. In vitro-transcribed full-length RNA from HCV genotype 1a (clone H77) was introduced into IHH by electroporation. Reverse transcription-PCR of cellular RNA isolated from HCV genome-transfected IHH suggested that viral RNA replication occurred. IHH transfected with the full-length HCV genome also displayed viral protein expression by indirect immunofluorescence. In contrast, cells transfected with polymerase-defective HCV (H77/GND) RNA as a negative control did not exhibit expression of the viral genome. Immunogold labeling demonstrated localization of E1 protein in the rough endoplasmic reticulum of RNA-transfected IHH. Virus-like particles of ∼50 nm were observed in the cytoplasm. After being inoculated with culture media of cells transfected with the full-length HCV genome, naïve IHH displayed NS5a protein expression in a dilution-dependent manner, but expression of NS5a was inhibited by prior incubation of culture medium with HCV-infected patient sera. NS5a-positive immunofluorescence of cell culture media of IHH transfected with full-length H77 RNA yielded ∼4.5 × 104 to 1 × 105 focus-forming units/ml. A similar level of virus growth was observed upon transfection of RNA from HCV genotype 2a (JFH1) into IHH. Taken together, our results suggest that IHH support HCV genome replication and virus assembly.


Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Christopher Dächert ◽  
Evgeny Gladilin ◽  
Marco Binder

Chronic Hepatitis C virus (HCV) infection still constitutes a major global health problem with almost half a million deaths per year. To date, the human hepatoma cell line Huh7 and its derivatives is the only cell line that robustly replicates HCV. However, even different subclones and passages of this single cell line exhibit tremendous differences in HCV replication efficiency. By comparative gene expression profiling using a multi-pronged correlation analysis across eight different Huh7 variants, we identified 34 candidate host factors possibly affecting HCV permissiveness. For seven of the candidates, we could show by knock-down studies their implication in HCV replication. Notably, for at least four of them, we furthermore found that overexpression boosted HCV replication in lowly permissive Huh7 cells, most prominently for the histone-binding transcriptional repressor THAP7 and the nuclear receptor NR0B2. For NR0B2, our results suggest a finely balanced expression optimum reached in highly permissive Huh7 cells, with even higher levels leading to a nearly complete breakdown of HCV replication, likely due to a dysregulation of bile acid and cholesterol metabolism. Our unbiased expression-profiling approach, hence, led to the identification of four host cellular genes that contribute to HCV permissiveness in Huh7 cells. These findings add to an improved understanding of the molecular underpinnings of the strict host cell tropism of HCV.


Sign in / Sign up

Export Citation Format

Share Document