scholarly journals Colocalization and Interaction of the Porcine Arterivirus Nucleocapsid Protein with the Small Nucleolar RNA-Associated Protein Fibrillarin

2003 ◽  
Vol 77 (22) ◽  
pp. 12173-12183 ◽  
Author(s):  
Dongwan Yoo ◽  
Sarah K. Wootton ◽  
Gang Li ◽  
Cheng Song ◽  
Raymond R. Rowland

ABSTRACT Porcine reproductive and respiratory syndrome virus (PRRSV) replicates in the cytoplasm of infected cells, but its nucleocapsid (N) protein localizes specifically to the nucleus and nucleolus. The mechanism of nuclear translocation and whether N associates with particular nucleolar components are unknown. In the present study, we show by confocal microscopy that the PRRSV N protein colocalizes with the small nucleolar RNA (snoRNA)-associated protein fibrillarin. Direct and specific interaction of N with fibrillarin was demonstrated in vivo by the mammalian two-hybrid assay in cells cotransfected with the N and fibrillarin genes and in vitro by the glutathione S-transferase pull-down assay using the expressed fibrillarin protein. Using a series of deletion mutants, the interactive domain of N with fibrillarin was mapped to a region of amino acids 30 to 37. For fibrillarin, the first 80 amino acids, which contain the glycine-arginine-rich region (the GAR domain), was determined to be the domain interactive with N. The N protein was able to bind to the full-length genomic RNA of PRRSV, and the RNA binding domain was identified as the region overlapping with the nuclear localization signal situated at positions 41 to 47. These results suggest that the N protein nuclear transport may be controlled by the binding of RNA to N. The PRRSV N protein was also able to bind to both 28S and 18S ribosomal RNAs. The protein-protein interaction between N and fibrillarin was RNA dependent but independent of N protein phosphorylation. Taken together, our studies demonstrate a specific interaction of the PRRSV nucleocapsid protein with the host cell protein fibrillarin in the nucleolus, and they imply a potential linkage of viral strategies for the modulation of host cell functions, possibly through rRNA precursor processing and ribosome biogenesis.

2004 ◽  
Vol 78 (15) ◽  
pp. 8281-8288 ◽  
Author(s):  
M. A. Mir ◽  
A. T. Panganiban

ABSTRACT Hantaviruses are tripartite negative-sense RNA viruses and members of the Bunyaviridae family. The nucleocapsid (N) protein is encoded by the smallest of the three genome segments (S). N protein is the principal structural component of the viral capsid and is central to the hantavirus replication cycle. We examined intermolecular N-protein interaction and RNA binding by using bacterially expressed Sin Nombre virus N protein. N assembles into di- and trimeric forms. The mono- and dimeric forms exist transiently and assemble into a trimeric form. In contrast, the trimer is highly stable and does not efficiently disassemble into the mono- and dimeric forms. The purified N-protein trimer is able to discriminate between viral and nonviral RNA molecules and, interestingly, recognizes and binds with high affinity the panhandle structure composed of the 3′ and 5′ ends of the genomic RNA. In contrast, the mono- and dimeric forms of N bind RNA to form a complex that is semispecific and salt sensitive. We suggest that trimerization of N protein is a molecular switch to generate a protein complex that can discriminate between viral and nonviral RNA molecules during the early steps of the encapsidation process.


2021 ◽  
Author(s):  
Christine Roden ◽  
Yifan Dai ◽  
Ian Seim ◽  
Myungwoon Lee ◽  
Rachel Sealfon ◽  
...  

Betacoronavirus SARS-CoV-2 infections caused the global Covid-19 pandemic. The nucleocapsid protein (N-protein) is required for multiple steps in the betacoronavirus replication cycle. SARS-CoV-2-N-protein is known to undergo liquid-liquid phase separation (LLPS) with specific RNAs at particular temperatures to form condensates. We show that N-protein recognizes at least two separate and distinct RNA motifs, both of which require double-stranded RNA (dsRNA) for LLPS. These motifs are separately recognized by N-protein's two RNA binding domains (RBDs). Addition of dsRNA accelerates and modifies N-protein LLPS in vitro and in cells and controls the temperature condensates form. The abundance of dsRNA tunes N-protein-mediated translational repression and may confer a switch from translation to genome packaging. Thus, N-protein's two RBDs interact with separate dsRNA motifs, and these interactions impart distinct droplet properties that can support multiple viral functions. These experiments demonstrate a paradigm of how RNA structure can control the properties of biomolecular condensates.


2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Autumn C. Holmes ◽  
Bert L. Semler

ABSTRACT Due to the limiting coding capacity for members of the Picornaviridae family of positive-strand RNA viruses, their successful replication cycles require complex interactions with host cell functions. These interactions span from the down-modulation of many aspects of cellular metabolism to the hijacking of specific host functions used during viral translation, RNA replication, and other steps of infection by picornaviruses, such as human rhinovirus, coxsackievirus, poliovirus, foot-and-mouth disease virus, enterovirus D-68, and a wide range of other human and nonhuman viruses. Although picornaviruses replicate exclusively in the cytoplasm of infected cells, they have extensive interactions with host cell nuclei and the proteins and RNAs that normally reside in this compartment of the cell. This review will highlight some of the more recent studies that have revealed how picornavirus infections impact the RNA metabolism of the host cell posttranscriptionally and how they usurp and modify host RNA binding proteins as well as microRNAs to potentiate viral replication.


2005 ◽  
Vol 79 (15) ◽  
pp. 10032-10039 ◽  
Author(s):  
William Severson ◽  
Xiaolin Xu ◽  
Michaela Kuhn ◽  
Nina Senutovitch ◽  
Mercy Thokala ◽  
...  

ABSTRACT The nucleocapsid (N) protein of hantavirus encapsidates viral genomic and antigenomic RNAs. Previously, deletion mapping identified a central, conserved region (amino acids 175 to 217) within the Hantaan virus (HTNV) N protein that interacts with a high affinity with these viral RNAs (vRNAs). To further define the boundaries of the RNA binding domain (RBD), several peptides were synthesized and examined for the ability to bind full-length S-segment vRNA. Peptide 195-217 retained 94% of the vRNA bound by the HTNV N protein, while peptides 175-186 and 205-217 bound only 1% of the vRNA. To further explore which residues were essential for binding vRNA, we performed a comprehensive mutational analysis of the amino acids in the RBD. Single and double Ala substitutions were constructed for 18 amino acids from amino acids 175 to 217 in the full-length N protein. In addition, Ala substitutions were made for the three R residues in peptide 185-217. An analysis of protein-RNA interactions by electrophoretic mobility shift assays implicated E192, Y206, and S217 as important for binding. Chemical modification experiments showed that lysine residues, but not arginine or cysteine residues, contribute to RNA binding, which agreed with bioinformatic predictions. Overall, these data implicate lysine residues dispersed from amino acids 175 to 429 of the protein and three amino acids located in the RBD as essential for RNA binding.


2009 ◽  
Vol 83 (21) ◽  
pp. 11307-11317 ◽  
Author(s):  
Saleh A. Eifan ◽  
Richard M. Elliott

ABSTRACT The bunyavirus nucleocapsid protein, N, is a multifunctional protein that encapsidates each of the three negative-sense genome segments to form ribonucleoprotein complexes that are the functional templates for viral transcription and replication. In addition, N protein molecules interact with themselves to form oligomers, with the viral L (RNA polymerase) protein, with the carboxy-terminal regions of either or both of the virion glycoproteins, and probably also with host cell proteins. Bunyamwera virus (BUNV), the prototype bunyavirus, encodes an N protein of 233 amino acids in length. To learn more about the roles of individual amino acids in the different interactions of N, we performed a wide-scale mutagenic analysis of the protein, and 110 single-point mutants were obtained. When the mutants were employed in a minireplicon assay to examine their effects on viral RNA synthesis, a wide range of activities compared to those of wild-type N protein were observed; changes at nine amino acid positions resulted in severely impaired RNA synthesis. Seventy-seven mutant clones were selected for use in the bunyavirus reverse genetics system, and 57 viable recombinant viruses were recovered. The recombinant viruses displayed a range of plaque sizes and titers in cell culture (from approximately 103 to 108 PFU/ml), and a number of viruses were shown to be temperature sensitive. Different assays were applied to determine why 20 mutant N proteins could not be recovered into infectious virus. Based on these results, a preliminary domain map of the BUNV N protein is proposed.


2002 ◽  
Vol 76 (17) ◽  
pp. 8737-8746 ◽  
Author(s):  
Xinsheng Zhang ◽  
Candace Glendening ◽  
Hawley Linke ◽  
Christopher L. Parks ◽  
Charles Brooks ◽  
...  

ABSTRACT The paramyxovirus template for transcription and genome replication consists of the RNA genome encapsidated by the nucleocapsid protein (N protein). The activity of the complex, consisting of viral polymerase plus template, can be measured with minireplicons in which the genomic coding sequence is replaced by chloramphenical acetyltransferase (CAT) antisense RNA. Using this approach, we showed that the C-terminal 24 amino acids of the measles virus N protein are dispensable for transcription and replication, based upon the truncation of N proteins used to support minireplicon reporter gene expression. Truncation at the C-terminal or penultimate amino acid 524 resulted in no change in CAT expression, whereas larger truncations spanning residues 523 to 502 were accompanied by an approximately twofold increase in basal activity. Reporter gene expression was enhanced by supplementation with the major inducible 70-kDa heat shock protein (Hsp72) for minireplicons with the N protein or the N protein truncated at position 525 or 524 but not in systems with a truncation at position 523 or 522. Naturally occurring sequence variants of the N protein with variations at positions 522 and 523 were also shown to lack Hsp72 responsiveness independent of changes in basal activity. Since these residues lie within a linear sequence predicting a direct Hsp72 interaction, N protein-Hsp72 binding reactions were analyzed by using surface plasmon resonance technology. Truncation of the C-terminal portion of the N protein by protease digestion resulted in a reduced binding affinity between Hsp72 and the N protein. Furthermore, with synthetic peptides, we established a correlation between the functional responsiveness and the binding affinity for Hsp72 of C-terminal N protein sequences. Collectively, these results show that the C-terminal 24 amino acids of the N protein represent a regulatory domain containing a functional motif that mediates a direct interaction with Hsp72.


Nature ◽  
1978 ◽  
Vol 275 (5677) ◽  
pp. 240-243 ◽  
Author(s):  
CORRADO BAGLIONI ◽  
MARCELLA SIMILI ◽  
DAVID A. SHAFRITZ

2020 ◽  
Author(s):  
Sisi Kang ◽  
Mei Yang ◽  
Suhua He ◽  
Yueming Wang ◽  
Xiaoxue Chen ◽  
...  

Abstract Although human antibodies elicited by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein are profoundly boosted upon infection, little is known about the function of N-reactive antibodies. Herein, we isolated and profiled a panel of 32 N protein-specific monoclonal antibodies (mAbs) from a quick recovery coronavirus disease-19 (COVID-19) convalescent patient who had dominant antibody responses to the SARS-CoV-2 N protein rather than to the SARS-CoV-2 spike (S) protein. The complex structure of the N protein RNA binding domain with the mAb with the highest binding affinity (nCoV396) revealed changes in the epitopes and antigen’s allosteric regulation. Functionally, a virus-free complement hyper-activation analysis demonstrated that nCoV396 specifically compromises the N protein-induced complement hyper-activation, which is a risk factor for the morbidity and mortality of COVID-19 patients, thus laying the foundation for the identification of functional anti-N protein mAbs.


2021 ◽  
Author(s):  
Tobias Mourier ◽  
Muhammad Shuaib ◽  
Sharif Hala ◽  
Sara Mfarrej ◽  
Fadwa Alofi ◽  
...  

Monitoring SARS-CoV-2 spread and evolution through genome sequencing is essential in handling the COVID-19 pandemic. The availability of patient hospital records is crucial for linking the genomic sequence information to virus function during the course of infections. Here, we sequenced 892 SARS-CoV-2 genomes collected from patients in Saudi Arabia from March to August 2020. From the assembled sequences, we estimate the SARS-CoV-2 effective population size and infection rate and outline the epidemiological dynamics of import and transmission events during this period in Saudi Arabia. We show that two consecutive mutations (R203K/G204R) in the SARS-CoV-2 nucleocapsid (N) protein are associated with higher viral loads in COVID-19 patients. Our comparative biochemical analysis reveals that the mutant N protein displays enhanced viral RNA binding and differential interaction with key host proteins. We found hyper-phosphorylation of the adjacent serine site (S206) in the mutant N protein by mass-spectrometry analysis. Furthermore, analysis of the host cell transcriptome suggests that the mutant N protein results in dysregulated interferon response genes. We provide crucial information in linking the R203K/G204R mutations in the N protein as a major modulator of host-virus interactions and increased viral load and underline the potential of the nucleocapsid protein as a drug target during infection.


Sign in / Sign up

Export Citation Format

Share Document