scholarly journals Human Cytomegalovirus UL130 Protein Promotes Endothelial Cell Infection through a Producer Cell Modification of the Virion

2005 ◽  
Vol 79 (13) ◽  
pp. 8361-8373 ◽  
Author(s):  
Marco Patrone ◽  
Massimiliano Secchi ◽  
Loretta Fiorina ◽  
Mariagrazia Ierardi ◽  
Gabriele Milanesi ◽  
...  

ABSTRACT Human cytomegalovirus (HCMV) growth in endothelial cells (EC) requires the expression of the UL131A-128 locus proteins. In this study, the UL130 protein (pUL130), the product of the largest gene of the locus, is shown to be a luminal glycoprotein that is inefficiently secreted from infected cells but is incorporated into the virion envelope as a Golgi-matured form. To investigate the mechanism of the UL130-mediated promotion of viral growth in EC, we performed a complementation analysis of a UL130 mutant strain. To provide UL130 in trans to viral infections, we constructed human embryonic lung fibroblast (HELF) and human umbilical vein endothelial cell (HUVEC) derivative cell lines that express UL130 via a retroviral vector. When the UL130-negative virus was grown in UL130-complementing HELF, the infectivity of progeny virions for HUVEC was restored to the wild-type level. In contrast, the infectivity of the UL130-negative virus for UL130-complementing HUVEC was low and similar to that of the same virus infecting control noncomplementing HUVEC. The UL130-negative virus, regardless of whether or not it had been complemented in the prior cycle, could form plaques only on UL130-complementing HUVEC, not control HUVEC. Because (i) both wild-type and UL130-transcomplemented virions maintained their infectivity for HUVEC after purification, (ii) UL130 failed to complement in trans the UL130-negative virus when it was synthesized in a cell separate from the one that produced the virions, and (iii) pUL130 is a virion protein, models are favored in which pUL130 acquisition in the producer cell renders HCMV virions competent for a subsequent infection of EC.

2006 ◽  
Vol 87 (9) ◽  
pp. 2451-2460 ◽  
Author(s):  
Barbara Adler ◽  
Laura Scrivano ◽  
Zsolt Ruzcics ◽  
Brigitte Rupp ◽  
Christian Sinzger ◽  
...  

The human cytomegalovirus (HCMV) genes UL128, UL130 and UL131A are essential for endothelial cell infection. Complementation of the defective UL131A gene of the non-endotheliotropic HCMV strain AD169 with wild-type UL131A in cis in an ectopic position restored endothelial cell tropism. The UL131A protein was found in virions in a complex with gH. Coinfection of fibroblasts with UL131A-negative and -positive viruses restored the endothelial cell tropism of UL131A-negative virions by complementing the virions with UL131A protein. Virus entry into endothelial cells, but not into fibroblasts, was blocked by an antipeptide antiserum to pUL131A. AD169, cis-complemented with wild-type UL131A, showed an impaired release of infectious particles from fibroblasts. A comparable defect in virus release was observed when UL131A was expressed ectopically in a virus background already expressing an intact copy of UL131A. In contrast, virus release from infected endothelial cells was not affected by UL131A. These data suggest a dual role for pUL131A in virus entry and virus exit from infected cells.


2010 ◽  
Vol 84 (18) ◽  
pp. 9019-9026 ◽  
Author(s):  
Andrea Schuessler ◽  
Kerstin Laib Sampaio ◽  
Laura Scrivano ◽  
Christian Sinzger

ABSTRACT The UL130 gene is one of the major determinants of endothelial cell (EC) tropism of human cytomegalovirus (HCMV). In order to define functionally important peptides within this protein, we have performed a charge-cluster-to-alanine (CCTA) mutational scanning of UL130 in the genetic background of a bacterial artificial chromosome-cloned endotheliotropic HCMV strain. A total of 10 charge clusters were defined, and in each of them two or three charged amino acids were replaced with alanines. While the six N-terminal clusters were phenotypically irrelevant, mutation of the four C-terminal clusters each caused a reduction of EC tropism. The importance of this protein domain was further emphasized by the fact that the C-terminal pentapeptide PNLIV was essential for infection of ECs, and the cell tropism could not be rescued by a scrambled version of this sequence. We conclude that the C terminus of the UL130 protein serves an important function for infection of ECs by HCMV. This makes UL130 a promising molecular target for antiviral strategies, e.g., the development of antiviral peptides.


2006 ◽  
Vol 80 (17) ◽  
pp. 8371-8378 ◽  
Author(s):  
Xuyan Feng ◽  
Jörg Schröer ◽  
Dong Yu ◽  
Thomas Shenk

ABSTRACT We have characterized the function of the human cytomegalovirus US24 gene, a US22 gene family member. Two US24-deficient mutants (BADinUS24 and BADsubUS24) exhibited a 20- to 30-fold growth defect, compared to their wild-type parent (BADwt), after infection at a relatively low (0.01 PFU/cell) or high (1 PFU/cell) input multiplicity. Representative virus-encoded proteins and viral DNA accumulated with normal kinetics to wild-type levels after infection with mutant virus when cells received equal numbers of mutant and wild-type infectious units. Further, the proteins were properly localized and no ultrastructural differences were found by electron microscopy in mutant-virus-infected cells compared to wild-type-virus-infected cells. However, virions produced by US24-deficient mutants had a 10-fold-higher genome-to-PFU ratio than wild-type virus. When infections were performed using equal numbers of input virus particles, the expression of immediate-early, early, and late viral proteins was substantially delayed and decreased in the absence of US24 protein. This delay is not due to inefficient virus entry, since two tegument proteins and viral DNA moved to the nucleus equally well in mutant- and wild-type-virus-infected cells. In summary, US24 is a virion protein and virions produced by US24-deficient viruses exhibit a block to the human cytomegalovirus replication cycle after viral DNA reaches the nucleus and before immediate-early mRNAs are transcribed.


2003 ◽  
Vol 84 (5) ◽  
pp. 1189-1197 ◽  
Author(s):  
Oliver Andres ◽  
Karola Obojes ◽  
Kwang Sik Kim ◽  
Volker ter Meulen ◽  
Jürgen Schneider-Schaulies

1998 ◽  
Vol 72 (9) ◽  
pp. 7341-7348 ◽  
Author(s):  
Axel Karger ◽  
Jerg Schmidt ◽  
Thomas C. Mettenleiter

ABSTRACT Initiation of herpesvirus infection requires attachment of virions to the host cell followed by fusion of virion envelope and cellular cytoplasmic membrane during penetration. In several alphaherpesviruses, glycoprotein C (gC) is the primary attachment protein, interacting with cell-surface heparan sulfate proteoglycans. Secondary binding is mediated by gD, which, normally, is also required for penetration. Recently, we described the isolation of a gD-negative infectious pseudorabies virus (PrV) mutant, PrV gD− Pass (J. Schmidt, B. G. Klupp, A. Karger, and T. C. Mettenleiter, J. Virol. 71:17–24, 1997). In PrV gD− Pass, attachment and penetration occur in the absence of gD. To assess the importance of specific attachment for infectivity of PrV gD− Pass, the gene encoding gC was deleted, resulting in mutant PrV gCD− Pass. Deletion of both known attachment proteins reduced specific infectivity compared to wild-type PrV by more than 10,000-fold. Surprisingly, the virus mutant still retained significant infectivity and could be propagated on normal noncomplementing cells, indicating the presence of another receptor-binding virion protein. Selection of bovine kidney (MDBK) cells resistant to infection by PrV gCD− Pass resulted in the isolation of a cell clone, designated NB, which was susceptible to infection by wild-type PrV but refractory to infection by either PrV gCD− Pass or PrV gD− Pass, a defect which could partially be overcome by polyethylene glycol (PEG)-induced membrane fusion. However, even after PEG-induced infection plaque formation of PrV gCD− Pass or PrV gD− Pass did not ensue in NB cells. Also, phenotypic gD complementation of PrV gCD− Pass or PrV gD−Pass rescued the defect in infection of NB cells but did not restore plaque formation. Glycosaminoglycan analyses of MDBK and NB cells yielded identical results, and NB cells were normally susceptible to infection by other alphaherpesviruses as well as vesicular stomatitis virus. Infectious center assays after PEG-induced infection of NB cells with PrV gD− Pass on MDBK cells indicated efficient exit of virions from infected NB cells. Together, our data suggest the presence of another receptor and receptor-binding virion protein which can mediate PrV entry and cell-to-cell spread in MDBK cells.


2010 ◽  
Vol 17 (4) ◽  
pp. 274-287 ◽  
Author(s):  
Anne-Laure Millard ◽  
Lea Häberli ◽  
Christian Sinzger ◽  
Maddalena Ghielmetti ◽  
Mårten K. J. Schneider ◽  
...  

2002 ◽  
Vol 83 (8) ◽  
pp. 1993-2000 ◽  
Author(s):  
Giuseppe Gerna ◽  
Elena Percivalle ◽  
Antonella Sarasini ◽  
Fausto Baldanti ◽  
M. Grazia Revello

The Towne strain of human cytomegalovirus (HCMV), originally recovered from the urine of a congenitally infected newborn, was attenuated through 125 passages in human embryonic lung fibroblast cell cultures. Although reliable markers of attenuation were not identified, the virus was shown to be attenuated by inoculation of both healthy human volunteers and immunocompromised patients. More recently, Towne (like other laboratory-adapted strains) was shown not to have two biological properties typical of recent clinical isolates: endothelial cell tropism and polymorphonuclear leukocyte tropism. These markers of attenuation are lost by all clinical isolates on extensive propagation in cell cultures and are apparently associated with one another. Here, we show that Towne may reacquire both endothelial cell tropism and leuko- (polymorphonuclear- and monocyte-) tropism on adaptation to growth in endothelial cell cultures. However, reversion to endothelial cell tropism is dissociated from reversion to leukotropism, since the latter was reacquired 10–20 passages later. Thus, these two biological properties, which were considered to be encoded by the same viral gene(s), appear to be distinct. Both restriction fragment length polymorphism and Southern blot analysis demonstrated the identity of the attenuated and endothelial cell tropic variants of Towne, thus suggesting that only minor variations (mutations) of the viral genome may be responsible for loss or reacquisition of the two biological properties. Viral genes involved in endothelial cell tropism and leukotropism remain to be identified. However, reversion of attenuated strains to pathogenicity in vivo cannot be excluded a priori.


Sign in / Sign up

Export Citation Format

Share Document