scholarly journals A Single Chromosome Unexpectedly Links Highly Divergent Isolates of Toxoplasma gondii

mBio ◽  
2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Katelyn A. Walzer ◽  
Jon P. Boyle

ABSTRACT Toxoplasma gondii is an obligate intracellular parasite that can cause disease in all warm-blooded animals studied to date, including humans. Over a billion people have been infected with this parasite worldwide. In Europe and North America, Toxoplasma has a clonal population structure, where only three lineages are highly dominant (strain types I, II, and III). Khan et al. [mBio 2(6): e00228-11, 2011] have carried out phylogenetic analyses on a large number of diverse strains from outside of these lineages and found evidence for a significant split between the clonal North American/European lineages and those in South America. In contrast to most of the genome, nearly all North American/European strains sampled, and the majority of South American strains sampled, harbored at least portions of a monomorphic chromosome Ia (Ia*). In contrast to previous models, these data suggest that the monomorphic haplotype originated in South America and migrated to the North. These authors propose that South American haplotype 12 was a precursor to modern-day type II, while South American haplotypes 6 and 9 crossed with haplotype 12 to give rise to the type I and III lineages, respectively. However, the findings reported by Khan et al. complicate the origin of chromosome Ia, since there are members of haplotypes 9 and 12 with nearly complete versions of Ia* and members of haplotypes 6 and 12 with over 50% of Ia*. This unexpected finding raises exciting new questions about how an entire common chromosome can be found within strains that are highly divergent at most other genomic loci.

2016 ◽  
Vol 12 (4) ◽  
pp. 20160062 ◽  
Author(s):  
Kieren J. Mitchell ◽  
Sarah C. Bray ◽  
Pere Bover ◽  
Leopoldo Soibelzon ◽  
Blaine W. Schubert ◽  
...  

The Tremarctinae are a subfamily of bears endemic to the New World, including two of the largest terrestrial mammalian carnivores that have ever lived: the giant, short-faced bears Arctodus simus from North America and Arctotherium angustidens from South America (greater than or equal to 1000 kg). Arctotherium angustidens became extinct during the Early Pleistocene, whereas Arctodus simus went extinct at the very end of the Pleistocene. The only living tremarctine is the spectacled bear ( Tremarctos ornatus ), a largely herbivorous bear that is today only found in South America. The relationships among the spectacled bears ( Tremarctos ), South American short-faced bears ( Arctotherium ) and North American short-faced bears ( Arctodus ) remain uncertain. In this study, we sequenced a mitochondrial genome from an Arctotherium femur preserved in a Chilean cave. Our molecular phylogenetic analyses revealed that the South American short-faced bears were more closely related to the extant South American spectacled bear than to the North American short-faced bears. This result suggests striking convergent evolution of giant forms in the two groups of short-faced bears ( Arctodus and Arctotherium ), potentially as an adaptation to dominate competition for megafaunal carcasses.


2019 ◽  
Vol 44 (4) ◽  
pp. 930-942
Author(s):  
Geraldine A. Allen ◽  
Luc Brouillet ◽  
John C. Semple ◽  
Heidi J. Guest ◽  
Robert Underhill

Abstract—Doellingeria and Eucephalus form the earliest-diverging clade of the North American Astereae lineage. Phylogenetic analyses of both nuclear and plastid sequence data show that the Doellingeria-Eucephalus clade consists of two main subclades that differ from current circumscriptions of the two genera. Doellingeria is the sister group to E. elegans, and the Doellingeria + E. elegans subclade in turn is sister to the subclade containing all remaining species of Eucephalus. In the plastid phylogeny, the two subclades are deeply divergent, a pattern that is consistent with an ancient hybridization event involving ancestral species of the Doellingeria-Eucephalus clade and an ancestral taxon of a related North American or South American group. Divergence of the two Doellingeria-Eucephalus subclades may have occurred in association with northward migration from South American ancestors. We combine these two genera under the older of the two names, Doellingeria, and propose 12 new combinations (10 species and two varieties) for all species of Eucephalus.


2018 ◽  
Vol 19 (4) ◽  
pp. 721-738 ◽  
Author(s):  
Alexandra Velasco ◽  
Melanie Valencia ◽  
Samantha Morrow ◽  
Valeria Ochoa-Herrera

Purpose Universidad San Francisco de Quito, USFQ, completed an assessment study to understand its performance in sustainability in 2012. This study aims to recognize the limitations of applying a North American rating system considering relevant criteria to a South American university and to emphasize the importance and lack of benchmarks available in the region. Design/methodology/approach Methodology used for this study is based on the Sustainability Tracking Assessment Rating System (STARS) by AASHE. In December 2013, USFQ joined the Pilot Program that included publicly documenting efforts, sharing feedback and making suggestions for system improvements. Findings Data collected by USFQ in 2012 and 2013 illustrate how the status of USFQ as a non-residential, teaching university in Ecuador in a developing country had several challenges while using an evaluation system established for universities within a North American system. The limits of assessing sustainability in South America are associated to its geographical location, the number of students and staff that commute to University and the lack of environmental services and certifications available in Ecuador. There are applicability issues with the use of STARS without performance reports from regional peers that can guide the development of relevant benchmarks for future comparability. Originality/value Little research has been conducted in the assessment and tracking of sustainability within universities in South America. This paper is one of the first to address the applicability of a North American self-reporting tool to a South American university.


mBio ◽  
2011 ◽  
Vol 2 (6) ◽  
Author(s):  
Asis Khan ◽  
Natalie Miller ◽  
David S. Roos ◽  
J. P. Dubey ◽  
Daniel Ajzenberg ◽  
...  

ABSTRACT Toxoplasma gondii is a common parasite of animals that also causes a zoonotic infection in humans. Previous studies have revealed a strongly clonal population structure that is shared between North America and Europe, while South American strains show greater genetic diversity and evidence of sexual recombination. The common inheritance of a monomorphic version of chromosome Ia (referred to as ChrIa*) among three clonal lineages from North America and Europe suggests that inheritance of this chromosome might underlie their recent clonal expansion. To further examine the diversity and distribution of ChrIa, we have analyzed additional strains with greater geographic diversity. Our findings reveal that the same haplotype of ChrIa* is found in the clonal lineages from North America and Europe and in older lineages in South America, where sexual recombination is more common. Although lineages from all three continents harbor the same conserved ChrIa* haplotype, strains from North America and Europe are genetically separate from those in South America, and these respective geographic regions show limited evidence of recent mixing. Genome-wide, array-based profiling of polymorphisms provided evidence for an ancestral flow from particular older southern lineages that gave rise to the clonal lineages now dominant in the north. Collectively, these data indicate that ChrIa* is widespread among nonclonal strains in South America and has more recently been associated with clonal expansion of specific lineages in North America and Europe. These findings have significant implications for the spread of genetic loci influencing transmission and virulence in pathogen populations. IMPORTANCE Understanding parasite population structure is important for evaluating the potential spread of pathogenicity determinants between different geographic regions. Examining the genetic makeup of different isolates of Toxoplasma gondii from around the world revealed that chromosome Ia is highly homogeneous among lineages that predominate on different continents and within genomes that were otherwise quite divergent. This pattern of recent shared ancestry is highly unusual and suggests that some gene(s) found on this chromosome imparts an unusual fitness advantage that has resulted in its recent spread. Although the basis for the conservation of this particularly homogeneous chromosome is unknown, it may have implications for the transmission of infection and spread of human disease.


2018 ◽  
Vol 108 (6) ◽  
pp. 739-749 ◽  
Author(s):  
D.N. Duque-Gamboa ◽  
M.F. Castillo-Cárdenas ◽  
L.M. Hernández ◽  
Y.C. Guzmán ◽  
M.R. Manzano ◽  
...  

AbstractProdiplosis longifila is reported as a pest of a wide range of species cultivated in America, including citrus, solanaceous species and asparagus. This species has different behavioural traits that are primarily centred on the oviposition habit and the feeding of larvae, which can change depending on the host. However, scarce information is available on population studies and the natural history of this insect, and uncertainty exists about the taxonomic identity and the geographic distribution of this species. The main objective was to perform a phylogenetic and genetic study of P. longifila populations and to define whether the North American and South American populations belong to the same species or whether a differentiation process had occurred due to geographic distance. A second objective was to determine whether this species showed genetic differentiation by host specialization in South America. The phylogenetic and population analyses based on DNA barcodes (cytochrome oxidase I gene) and a region of the ribosomal DNA (ITS2) revealed divergent clades attributable to geographic distance and host specificity. The North American and South American P. longifila insects were confirmed to be genetically distinct, and the genetic distances exceeded the values expected for intraspecific variation. In South America, the population analysis of P. longifila from tomato, sweet pepper (Solanaceae), Tahiti lime and key lime (Rutaceae) hosts evidenced high genetic differentiation between populations associated with different hosts and an absence of gene flow between these groups, suggesting the corresponding formation of cryptic species.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Kirk D. C. Jensen ◽  
Ana Camejo ◽  
Mariane B. Melo ◽  
Cynthia Cordeiro ◽  
Lindsay Julien ◽  
...  

ABSTRACT The intracellular parasite Toxoplasma gondii infects a wide variety of vertebrate species globally. Infection in most hosts causes a lifelong chronic infection and generates immunological memory responses that protect the host against new infections. In regions where the organism is endemic, multiple exposures to T. gondii likely occur with great frequency, yet little is known about the interaction between a chronically infected host and the parasite strains from these areas. A widely used model to explore secondary infection entails challenge of chronically infected or vaccinated mice with the highly virulent type I RH strain. Here, we show that although vaccinated or chronically infected C57BL/6 mice are protected against the type I RH strain, they are not protected against challenge with most strains prevalent in South America or another type I strain, GT1. Genetic and genomic analyses implicated the parasite-secreted rhoptry effectors ROP5 and ROP18, which antagonize the host's gamma interferon-induced immunity-regulated GTPases (IRGs), as primary requirements for virulence during secondary infection. ROP5 and ROP18 promoted parasite superinfection in the brains of challenged survivors. We hypothesize that superinfection may be an important mechanism to generate T. gondii strain diversity, simply because two parasite strains would be present in a single meal consumed by the feline definitive host. Superinfection may drive the genetic diversity of Toxoplasma strains in South America, where most isolates are IRG resistant, compared to North America, where most strains are IRG susceptible and are derived from a few clonal lineages. In summary, ROP5 and ROP18 promote Toxoplasma virulence during reinfection. IMPORTANCE Toxoplasma gondii is a widespread parasite of warm-blooded animals and currently infects one-third of the human population. A long-standing assumption in the field is that prior exposure to this parasite protects the host from subsequent reexposure, due to the generation of protective immunological memory. However, this assumption is based on clinical data and mouse models that analyze infections with strains common to Europe infections with strains common to Europe and North America. In contrast, we found that the majority of strains sampled from around the world, in particular those from South America, were able to kill or reinfect the brains of hosts previously exposed to T. gondii. The T. gondii virulence factors ROP5 and ROP18, which inhibit key host effectors that mediate parasite killing, were required for these phenotypes. We speculate that these results underpin clinical observations that pregnant women previously exposed to Toxoplasma can develop congenital infection upon reexposure to South American strains.


Botany ◽  
2014 ◽  
Vol 92 (12) ◽  
pp. 901-910 ◽  
Author(s):  
Joel P. Olfelt ◽  
William A. Freyman

Taxa of Rhodiola L. (Crassulaceae) generally grow in arctic or alpine habitats. Some Rhodiola species are used medicinally, one taxon, Rhodiola integrifolia Raf. subsp. leedyi (Rosend. & J.W.Moore) Moran, (Leedy’s roseroot), is rare and endangered, and the group’s biogeography in North America is intriguing because of distributional disjunctions and the possibility that Rhodiola rhodantha (A.Gray) H.Jacobsen (2n = 7II) and Rhodiola rosea L. (2n = 11II) hybridized to form Rhodiola integrifolia Raf. (2n = 18II). Recent studies of the North American Rhodiola suggest that the group’s current taxonomy is misleading. We analyzed nuclear and chloroplast DNA sequences (internal transcribed spacer (ITS), trnL intron, trnL–trnF spacer, trnS–trnG spacer) from the North American Rhodiola taxa. We combined our data with GenBank sequences from Asian Rhodiola species, performed parsimony, maximum likelihood (ML), and Bayesian phylogenetic analyses, and applied a Bayesian clock model to the ITS data. Our analyses reveal two major Rhodiola clades, suggest that hybridization between R. rhodantha and R. rosea lineages was possible, show two distinct clades within R. integrifolia, and demonstrate that a Black Hills, South Dakota, Rhodiola population should be reclassified as Leedy’s roseroot. We recommend that R. integrifolia be revised, and that the Black Hills Leedy’s roseroot population be managed as part of that rare and endangered taxon.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Yong Fu ◽  
Xia Cui ◽  
Sai Fan ◽  
Jing Liu ◽  
Xiao Zhang ◽  
...  

ABSTRACT Acyl coenzyme A (CoA)-binding protein (ACBP) can bind acyl-CoAs with high specificity and affinity, thus playing multiple roles in cellular functions. Mitochondria of the apicomplexan parasite Toxoplasma gondii have emerged as key organelles for lipid metabolism and signaling transduction. However, the rationale for how this parasite utilizes acyl-CoA-binding protein to regulate mitochondrial lipid metabolism remains unclear. Here, we show that an ankyrin repeat-containing protein, TgACBP2, is localized to mitochondria and displays active acyl-CoA-binding activities. Dephosphorylation of TgACBP2 is associated with relocation from the plasma membrane to the mitochondria under conditions of regulation of environmental [K+]. Under high [K+] conditions, loss of ACBP2 induced mitochondrial dysfunction and apoptosis-like cell death. Disruption of ACBP2 caused growth and virulence defects in the type II strain but not in type I parasites. Interestingly, mitochondrial association factor-1 (MAF1)-mediated host mitochondrial association (HMA) restored the growth ability of ACBP2-deficient type II parasites. Lipidomics analysis indicated that ACBP2 plays key roles in the cardiolipin metabolism of type II parasites and that MAF1 expression complemented the lipid metabolism defects of ACBP2-deficient type II parasites. In addition, disruption of ACBP2 caused attenuated virulence of Prugniuad (Pru) parasites for mice. Taking the results collectively, these data indicate that ACBP2 is critical for the growth and virulence of type II parasites and for the growth of type I parasites under high [K+] conditions. IMPORTANCE Toxoplasma gondii is one of the most successful human parasites, infecting nearly one-third of the total world population. T. gondii tachyzoites residing within parasitophorous vacuoles (PVs) can acquire fatty acids both via salvage from host cells and via de novo synthesis pathways for membrane biogenesis. However, although fatty acid fluxes are known to exist in this parasite, how fatty acids flow through Toxoplasma lipid metabolic organelles, especially mitochondria, remains unknown. In this study, we demonstrated that Toxoplasma expresses an active ankyrin repeat containing protein TgACBP2 to coordinate cardiolipin metabolism. Specifically, HMA acquisition resulting from heterologous functional expression of MAF1 rescued growth and lipid metabolism defects in ACBP2-deficient type II parasites, manifesting the complementary role of host mitochondria in parasite cardiolipin metabolism. This work highlights the importance of TgACBP2 in parasite cardiolipin metabolism and provides evidence for metabolic association of host mitochondria with T. gondii.


2021 ◽  
Vol 8 (10) ◽  
Author(s):  
Cecily S. C. Nicholl ◽  
Eloise S. E. Hunt ◽  
Driss Ouarhache ◽  
Philip D. Mannion

Notosuchians are an extinct clade of terrestrial crocodyliforms with a particularly rich record in the late Early to Late Cretaceous (approx. 130–66 Ma) of Gondwana. Although much of this diversity comes from South America, Africa and Indo-Madagascar have also yielded numerous notosuchian remains. Three notosuchian species are currently recognized from the early Late Cretaceous (approx. 100 Ma) Kem Kem Group of Morocco, including the peirosaurid Hamadasuchus rebouli . Here, we describe two new specimens that demonstrate the presence of at least a fourth notosuchian species in this fauna. Antaeusuchus taouzensis n. gen. n. sp. is incorporated into one of the largest notosuchian-focused character-taxon matrices yet to be compiled, comprising 443 characters scored for 63 notosuchian species, with an increased sampling of African and peirosaurid species. Parsimony analyses run under equal and extended implied weighting consistently recover Antaeusuchus as a peirosaurid notosuchian, supported by the presence of two distinct waves on the dorsal dentary surface, a surangular which laterally overlaps the dentary above the mandibular fenestra, and a relatively broad mandibular symphysis. Within Peirosauridae, Antaeusuchus is recovered as the sister taxon of Hamadasuchus . However, it differs from Hamadasuchus with respect to several features, including the ornamentation of the lateral surface of the mandible, the angle of divergence of the mandibular rami, the texture of tooth enamel and the shape of the teeth, supporting their generic distinction. We present a critical reappraisal of the non-South American Gondwanan notosuchian record, which spans the Middle Jurassic–late Eocene. This review, as well as our phylogenetic analyses, indicate the existence of at least three approximately contemporaneous peirosaurid lineages within the Kem Kem Group, alongside other notosuchians, and support the peirosaurid affinities of the ‘trematochampsid’ Miadanasuchus oblita from the Maastrichtian of Madagascar. Furthermore, the Cretaceous record demonstrates the presence of multiple lineages of approximately contemporaneous notosuchians in several African and Madagascan faunas, and supports previous suggestions regarding an undocumented pre-Aptian radiation of Notosuchia. By contrast, the post-Cretaceous record is depauperate, comprising rare occurrences of sebecosuchians in north Africa prior to their extirpation.


Author(s):  
Cameron Jones

While it is certainly true that more academic studies have focused on the North American missions, in terms of their historical impact South American missions were just as important to the frontiers of Spain and Portugal’s American empires. The massive size alone of the frontier region, stretching from the upper reaches of the Amazon basin to the headwaters of the Paraná as well as stretching across the lower Southern Cone, meant numerous missionary enterprises emerged in an attempt to evangelize the peoples who inhabited these regions. While small handfuls of Dominicans, Mercedarians, and Augustinians would engage in such efforts, most missions were established by the Jesuits or Franciscans. Certainly, for the Jesuits, or the Society of Jesus as they are properly known, American missions represented an extension of the Counter-Reformation for which they were created. Starting in the mid-16th century, this relatively new organization, founded in 1534, began in earnest to “reduce” the Indigenous peoples into their missions. These activities, however, abruptly ended when the Jesuits were expelled from both the Portuguese and Spanish empires in 1759 and 1767 respectfully. The much older Franciscan order had extensive experience in popular missions in Europe and was one of the first orders of regular clergy in the Americas. Franciscans, like the Jesuits, engaged in evangelizing activities throughout both North and South America from the colonial period to the present. The expulsion of the Jesuits, however, pushed them further to the forefront of missionizing efforts in the late colonial period. This acceleration of Franciscan missionary activity was aided by the establishment of the Apostolic Institute in 1682. The Institute created a pipeline of missionaries from Spain to come directly to frontier areas with funding from the crown. While this aided missionary efforts throughout South America, particularly in areas abandoned by the Jesuits, it embroiled the missionaries in the politics of the Bourbon reforms and their obsession with limited clerical power. Ultimately, while missionizing efforts continued into the Republican period, their association with the Spanish and Portuguese crowns led to widespread suppression and secularization following independence. The historiographical divide in the field tends to lie between usually older, Eurocentric histories by scholar-clerics which focus on the missionaries themselves, and newer studies carried out by more secular professional historians that examine how Indigenous populations were affected by the inherent imperialism of the missions, though exceptions abound.


Sign in / Sign up

Export Citation Format

Share Document