scholarly journals CagY-Dependent Regulation of Type IV Secretion inHelicobacter pyloriIs Associated with Alterations in Integrin Binding

mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Emma C. Skoog ◽  
Vasilios A. Morikis ◽  
Miriam E. Martin ◽  
Greg A. Foster ◽  
Lucy P. Cai ◽  
...  

ABSTRACTStrains ofHelicobacter pylorithat cause ulcer or gastric cancer typically express a type IV secretion system (T4SS) encoded by thecagpathogenicity island (cagPAI). CagY is an ortholog of VirB10 that, unlike other VirB10 orthologs, has a large middle repeat region (MRR) with extensive repetitive sequence motifs, which undergo CD4+T cell-dependent recombination during infection of mice. Recombination in the CagY MRR reduces T4SS function, diminishes the host inflammatory response, and enables the bacteria to colonize at a higher density. Since CagY is known to bind human α5β1integrin, we tested the hypothesis that recombination in the CagY MRR regulates T4SS function by modulating binding to α5β1integrin. Using a cell-free microfluidic assay, we found thatH. pyloribinding to α5β1integrin under shear flow is dependent on the CagY MRR, but independent of the presence of the T4SS pili, which are only formed whenH. pyloriis in contact with host cells. Similarly, expression of CagY in the absence of other T4SS genes was necessary and sufficient for whole bacterial cell binding to α5β1integrin. Bacteria with variantcagYalleles that reduced T4SS function showed comparable reduction in binding to α5β1integrin, although CagY was still expressed on the bacterial surface. We speculate thatcagY-dependent modulation ofH. pyloriT4SS function is mediated by alterations in binding to α5β1integrin, which in turn regulates the host inflammatory response so as to maximize persistent infection.IMPORTANCEInfection withH. pylorican cause peptic ulcers and is the most important risk factor for gastric cancer, the third most common cause of cancer death worldwide. The majorH. pylorivirulence factor that determines whether infection causes disease or asymptomatic colonization is the type IV secretion system (T4SS), a sort of molecular syringe that injects bacterial products into gastric epithelial cells and alters host cell physiology. We previously showed that recombination in CagY, an essential T4SS component, modulates the function of the T4SS. Here we found that these recombination events produce parallel changes in specific binding to α5β1integrin, a host cell receptor that is essential for T4SS-dependent translocation of bacterial effectors. We propose that CagY-dependent binding to α5β1integrin acts like a molecular rheostat that alters T4SS function and modulates the host immune response to promote persistent infection.

2018 ◽  
Author(s):  
Emma C. Skoog ◽  
Vasilios A. Morikis ◽  
Miriam E. Martin ◽  
Greg A. Foster ◽  
Lucy P. Cai ◽  
...  

ABSTRACTStrains ofHelicobacter pylorithat cause ulcer or gastric cancer typically express a type IV secretion system (T4SS) encoded by thecagpathogenicity island (PAI). CagY is an ortholog of VirB10 that, unlike other VirB10 orthologs, has a large middle repeat region (MRR) with extensive repetitive sequence motifs, which undergo CD4+ T cell-dependent recombination during infection of mice. Recombination in the CagY MRR reduces T4SS function, diminishes the host inflammatory response, and enables the bacteria to colonize at a higher density. Since CagY is known to bind human α5β1integrin, we tested the hypothesis that recombination in the CagY MRR regulates T4SS function by modulating binding to α5β1integrin. Using a cell-free microfluidic assay, we found thatH. pyloribinding to α5β1integrin under shear flow is dependent on the CagY MRR, but independent of the presence of the T4SS pili, which are only formed whenH. pyloriis in contact with host cells. Similarly, expression of CagY in the absence of other T4SS genes was necessary and sufficient for whole bacterial cell binding to α5β1integrin. Bacteria with variantcagYalleles that reduced T4SS function showed comparable reduction in binding to α5β1integrin, though CagY was still expressed on the bacterial surface. We speculate thatcagY-dependent modulation ofH. pyloriT4SS function is mediated by alterations in binding to α5β1integrin, which in turn regulates the host inflammatory response so as to maximize persistent infection.IMPORTANCEInfection withH. pylorican cause peptic ulcers, and is the most important risk factor for gastric cancer, the third most common cause of cancer death worldwide. The majorH. pylorivirulence factor that determines whether infection causes disease or asymptomatic colonization is the type IV secretion system (T4SS), a sort of molecular syringe that injects bacterial products into gastric epithelial cells and alters host cell physiology. We previously showed that recombination in CagY, an essential T4SS component, modulates the function of the T4SS. Here we found that these recombination events produce parallel changes in specific binding to α5β1integrin, a host cell receptor that is essential for T4SS-dependent translocation of bacterial effectors. We propose that CagY-dependent binding to α5β1integrin acts like a molecular rheostat that alters T4SS function and modulates the host immune response to promote persistent infection.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. e03147-20
Author(s):  
Emma C. Skoog ◽  
Miriam E. Martin ◽  
Roberto M. Barrozo ◽  
Lori M. Hansen ◽  
Lucy P. Cai ◽  
...  

ABSTRACTThe Helicobacter pylori type IV secretion system (T4SS) encoded on the cag pathogenicity island (cagPAI) secretes the CagA oncoprotein and other effectors into the gastric epithelium. During murine infection, T4SS function is lost in an immune-dependent manner, typically as a result of in-frame recombination in the middle repeat region of cagY, though single nucleotide polymorphisms (SNPs) in cagY or in other essential genes may also occur. Loss of T4SS function also occurs in gerbils, nonhuman primates, and humans, suggesting that it is biologically relevant and not simply an artifact of the murine model. Here, we sought to identify physiologically relevant conditions under which T4SS function is maintained in the murine model. We found that loss of H. pylori T4SS function in mice was blunted by systemic Salmonella coinfection and completely eliminated by dietary iron restriction. Both have epidemiologic parallels in humans, since H. pylori strains from individuals in developing countries, where iron deficiency and systemic infections are common, are also more often cagPAI+ than strains from developed countries. These results have implications for our fundamental understanding of the cagPAI and also provide experimental tools that permit the study of T4SS function in the murine model.IMPORTANCE The type IV secretion system (T4SS) is the major Helicobacter pylori virulence factor, though its function is lost during murine infection. Loss of function also occurs in gerbils and in humans, suggesting that it is biologically relevant, but the conditions under which T4SS regulation occurs are unknown. Here, we found that systemic coinfection with Salmonella and iron deprivation each promote retention of T4SS function. These results improve our understanding of the cag pathogenicity island (cagPAI) and provide experimental tools that permit the study of T4SS function in the murine model.


2014 ◽  
Vol 82 (8) ◽  
pp. 3457-3470 ◽  
Author(s):  
Elizabeth M. Johnson ◽  
Jennifer A. Gaddy ◽  
Bradley J. Voss ◽  
Ewa E. Hennig ◽  
Timothy L. Cover

ABSTRACTHelicobacter pyloricauses numerous alterations in gastric epithelial cells through processes that are dependent on activity of thecagtype IV secretion system (T4SS). Filamentous structures termed “pili” have been visualized at the interface betweenH. pyloriand gastric epithelial cells, and previous studies suggested that pilus formation is dependent on the presence of thecagpathogenicity island (PAI). Thus far, there has been relatively little effort to identify specific genes that are required for pilus formation, and the role of pili in T4SS function is unclear. In this study, we selected 7 genes in thecagPAI that are known to be required for T4SS function and investigated whether these genes were required for pilus formation.cagT,cagX,cagV,cagM, andcag3mutants were defective in both T4SS function and pilus formation; complemented mutants regained T4SS function and the capacity for pilus formation.cagYandcagCmutants were defective in T4SS function but retained the capacity for pilus formation. These results define a set ofcagPAI genes that are required for both pilus biogenesis and T4SS function and reveal that these processes can be uncoupled in specific mutant strains.


2015 ◽  
Vol 83 (3) ◽  
pp. 1190-1198 ◽  
Author(s):  
Joseph G. Graham ◽  
Caylin G. Winchell ◽  
Uma M. Sharma ◽  
Daniel E. Voth

Coxiella burnetiicauses human Q fever, a zoonotic disease that presents with acute flu-like symptoms and can result in chronic life-threatening endocarditis. In human alveolar macrophages,C. burnetiiuses a Dot/Icm type IV secretion system (T4SS) to generate a phagolysosome-like parasitophorous vacuole (PV) in which to replicate. The T4SS translocates effector proteins, or substrates, into the host cytosol, where they mediate critical cellular events, including interaction with autophagosomes, PV formation, and prevention of apoptosis. Over 100C. burnetiiDot/Icm substrates have been identified, but the function of most remains undefined. Here, we identified a novel Dot/Icm substrate-encoding open reading frame (CbuD1884) present in allC. burnetiiisolates except the Nine Mile reference isolate, where the gene is disrupted by a frameshift mutation, resulting in a pseudogene. The CbuD1884 protein contains two transmembrane helices (TMHs) and a coiled-coil domain predicted to mediate protein-protein interactions. The C-terminal region of the protein contains a predicted Dot/Icm translocation signal and was secreted by the T4SS, while the N-terminal portion of the protein was not secreted. When ectopically expressed in eukaryotic cells, the TMH-containing N-terminal region of the CbuD1884 protein trafficked to the endoplasmic reticulum (ER), with the C terminus dispersed nonspecifically in the host cytoplasm. This new Dot/Icm substrate is now termed ElpA (ER-localizingproteinA). Full-length ElpA triggered substantial disruption of ER structure and host cell secretory transport. These results suggest that ElpA is a pathotype-specific T4SS effector that influences ER function duringC. burnetiiinfection.


mBio ◽  
2011 ◽  
Vol 2 (6) ◽  
Author(s):  
Julieta Aguilar ◽  
Todd A. Cameron ◽  
John Zupan ◽  
Patricia Zambryski

ABSTRACTType IV secretion systems (T4SS) transfer DNA and/or proteins into recipient cells. Here we performed immunofluorescence deconvolution microscopy to localize the assembled T4SS by detection of its native components VirB1, VirB2, VirB4, VirB5, VirB7, VirB8, VirB9, VirB10, and VirB11 in the C58 nopaline strain ofAgrobacterium tumefaciens, following induction of virulence (vir) gene expression. These different proteins represent T4SS components spanning the inner membrane, periplasm, or outer membrane. Native VirB2, VirB5, VirB7, and VirB8 were also localized in theA. tumefaciensoctopine strain A348. Quantitative analyses of the localization of all the above Vir proteins in nopaline and octopine strains revealed multiple foci in single optical sections in over 80% and 70% of the bacterial cells, respectively. Green fluorescent protein (GFP)-VirB8 expression followingvirinduction was used to monitor bacterial binding to live host plant cells; bacteria bind predominantly along their lengths, with few bacteria binding via their poles or subpoles.vir-induced attachment-defective bacteria or bacteria without the Ti plasmid do not bind to plant cells. These data support a model where multiplevir-T4SS around the perimeter of the bacterium maximize effective contact with the host to facilitate efficient transfer of DNA and protein substrates.IMPORTANCETransfer of DNA and/or proteins to host cells through multiprotein type IV secretion system (T4SS) complexes that span the bacterial cell envelope is critical to bacterial pathogenesis. Early reports suggested that T4SS components localized at the cell poles. Now, higher-resolution deconvolution fluorescence microscopy reveals that all structural components of theAgrobacterium tumefaciens vir-T4SS, as well as its transported protein substrates, localize to multiple foci around the cell perimeter. These results lead to a new model ofA. tumefaciensattachment to a plant cell, whereA. tumefacienstakes advantage of the multiplevir-T4SS along its length to make intimate lateral contact with plant cells and thereby effectively transfer DNA and/or proteins through thevir-T4SS. The T4SS ofA. tumefaciensis among the best-studied T4SS, and the majority of its components are highly conserved in different pathogenic bacterial species. Thus, the results presented can be applied to a broad range of pathogens that utilize T4SS.


2006 ◽  
Vol 188 (13) ◽  
pp. 4787-4800 ◽  
Author(s):  
Valerie J. Busler ◽  
Victor J. Torres ◽  
Mark S. McClain ◽  
Oscar Tirado ◽  
David B. Friedman ◽  
...  

ABSTRACT Many Helicobacter pylori isolates contain a 40-kb region of chromosomal DNA known as the cag pathogenicity island (PAI). The risk for development of gastric cancer or peptic ulcer disease is higher among humans infected with cag PAI-positive H. pylori strains than among those infected with cag PAI-negative strains. The cag PAI encodes a type IV secretion system that translocates CagA into gastric epithelial cells. To identify Cag proteins that are expressed by H. pylori during growth in vitro, we compared the proteomes of a wild-type H. pylori strain and an isogenic cag PAI deletion mutant using two-dimensional difference gel electrophoresis (2D-DIGE) in multiple pH ranges. Seven Cag proteins were identified by this approach. We then used a yeast two-hybrid system to detect potential protein-protein interactions among 14 Cag proteins. One heterotypic interaction (CagY/7 with CagX/8) and two homotypic interactions (involving H. pylori VirB11/ATPase and Cag5) were similar to interactions previously reported to occur among homologous components of the Agrobacterium tumefaciens type IV secretion system. Other interactions involved Cag proteins that do not have known homologues in other bacterial species. Biochemical analysis confirmed selected interactions involving five of the proteins that were identified by 2D-DIGE. Protein-protein interactions among Cag proteins are likely to have an important role in the assembly of the H. pylori type IV secretion apparatus.


2005 ◽  
Vol 73 (8) ◽  
pp. 4643-4652 ◽  
Author(s):  
Bianca Bauer ◽  
Stefan Moese ◽  
Sina Bartfeld ◽  
Thomas F. Meyer ◽  
Matthias Selbach

ABSTRACT Helicobacter pylori persistently infects the human stomach and can cause gastritis, gastric ulceration, and gastric cancer. The type IV secretion system (TFSS) of virulent H. pylori strains translocates the CagA protein, inducing the dephosphorylation of host cell proteins and leading to changes in the morphology or shape of AGS gastric epithelial cells. Furthermore, the TFSS is involved in the induction of proinflammatory cytokines. While the H. pylori genes required for TFSS function have been investigated systematically, little is known about possible host cell factors involved. We infected 19 different mammalian cell lines individually with H. pylori and analyzed CagA translocation, dephosphorylation of host cell proteins, chemokine secretion (interleukin-8 and macrophage inflammatory protein 2), and changes in cellular phenotypes. Our results demonstrate that not only bacterial but also host cell factors determine the cellular response to infection. The identification of such unknown host cell factors will add to our understanding of host-pathogen interactions and might help in the development of new therapeutic strategies.


2019 ◽  
Vol 88 (2) ◽  
Author(s):  
Aung Soe Lin ◽  
Samuel D. R. Dooyema ◽  
Arwen E. Frick-Cheng ◽  
M. Lorena Harvey ◽  
Giovanni Suarez ◽  
...  

ABSTRACT Helicobacter pylori colonizes the stomach in about half of the world’s population. H. pylori strains containing the cag pathogenicity island (cag PAI) are associated with a higher risk of gastric adenocarcinoma or peptic ulcer disease than cag PAI-negative strains. The cag PAI encodes a type IV secretion system (T4SS) that mediates delivery of the CagA effector protein as well as nonprotein bacterial constituents into gastric epithelial cells. H. pylori-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and interleukin-8 (IL-8) secretion are attributed to T4SS-dependent delivery of lipopolysaccharide metabolites and peptidoglycan into host cells, and Toll-like receptor 9 (TLR9) activation is attributed to delivery of bacterial DNA. In this study, we analyzed the bacterial energetic requirements associated with these cellular alterations. Mutant strains lacking Cagα, Cagβ, or CagE (putative ATPases corresponding to VirB11, VirD4, and VirB4 in prototypical T4SSs) were capable of T4SS core complex assembly but defective in CagA translocation into host cells. Thus, the three Cag ATPases are not functionally redundant. Cagα and CagE were required for H. pylori-induced NF-κB activation, IL-8 secretion, and TLR9 activation, but Cagβ was dispensable for these responses. We identified putative ATP-binding motifs (Walker-A and Walker-B) in each of the ATPases and generated mutant strains in which these motifs were altered. Each of the Walker box mutant strains exhibited properties identical to those of the corresponding deletion mutant strains. These data suggest that Cag T4SS-dependent delivery of nonprotein bacterial constituents into host cells occurs through mechanisms different from those used for recruitment and delivery of CagA into host cells.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Aung Soe Lin ◽  
Mark S. McClain ◽  
Amber C. Beckett ◽  
Rhonda R. Caston ◽  
M. Lorena Harvey ◽  
...  

ABSTRACT The Helicobacter pylori Cag type IV secretion system (T4SS) translocates the effector protein CagA and nonprotein bacterial constituents into host cells. In this study, we infected Mongolian gerbils with an H. pylori strain in which expression of the cagUT operon (required for Cag T4SS activity) is controlled by a TetR/tetO system. Transcript levels of cagU were significantly higher in gastric tissue from H. pylori-infected animals receiving doxycycline-containing chow (to derepress Cag T4SS activity) than in tissue from infected control animals receiving drug-free chow. At 3 months postinfection, infected animals receiving doxycycline had significantly increased gastric inflammation compared to infected control animals. Dysplasia (a premalignant histologic lesion) and/or invasive gastric adenocarcinoma were detected only in infected gerbils receiving doxycycline, not in infected control animals. We then conducted experiments in which Cag T4SS activity was derepressed during defined stages of infection. Continuous Cag T4SS activity throughout a 3-month time period resulted in higher rates of dysplasia and/or gastric cancer than observed when Cag T4SS activity was limited to early or late stages of infection. Cag T4SS activity for the initial 6 weeks of infection was sufficient for the development of gastric inflammation at the 3-month time point, with gastric cancer detected in a small proportion of animals. These experimental results, together with previous studies of cag mutant strains, provide strong evidence that Cag T4SS activity contributes to gastric carcinogenesis and help to define the stages of H. pylori infection during which Cag T4SS activity causes gastric alterations relevant for cancer pathogenesis. IMPORTANCE The “hit-and-run model” of carcinogenesis proposes that an infectious agent triggers carcinogenesis during initial stages of infection and that the ongoing presence of the infectious agent is not required for development of cancer. H. pylori infection and actions of CagA (an effector protein designated a bacterial oncoprotein, secreted by the Cag T4SS) are proposed to constitute a paradigm for hit-and-run carcinogenesis. In this study, we report the development of methods for controlling H. pylori Cag T4SS activity in vivo and demonstrate that Cag T4SS activity contributes to gastric carcinogenesis. We also show that Cag T4SS activity during an early stage of infection is sufficient to initiate a cascade of cellular alterations leading to gastric inflammation and gastric cancer at later time points.


2012 ◽  
Vol 56 (4) ◽  
pp. 1698-1702 ◽  
Author(s):  
Hongyan Hu ◽  
Yongfei Hu ◽  
Yuanlong Pan ◽  
Hui Liang ◽  
Haiyan Wang ◽  
...  

ABSTRACTThe spread of theblaNDM-1gene is gaining worldwide attentions. This gene is usually carried by large plasmids and has been discovered in diverse bacteria since it was originally found inKlebsiella pneumoniae. Here we report the complete sequences of ablaNDM-1-bearing plasmid, pNDM-BJ01, and its variant, pNDM-BJ02, isolated from clinicalAcinetobacter lwoffiistrains. The plasmid pNDM-BJ01 is 47.3 kb in size and cannot be classified into any known plasmid incompatibility group, thus representing a novel plasmid with an unknown maintenance mechanism. This plasmid contains both ablaNDM-1gene and a type IV secretion system (T4SS) gene cluster. The T4SS is assigned to the P-type T4SS group, which usually encode a short, rigid pilus, and theblaNDM-1gene is located within a composite transposon flanked by two insertion elements of ISAba125. Plasmid pNDM-BJ02 is nearly identical to pNDM-BJ01 except that one copy of the ISAba125element is missing, and it is therefore regarded as a variant of pNDM-BJ01. Sequence alignment indicated that thisblaNDM-1-containing composite transposon, which can also be captured by other mobile elements, was probably a product of multiple recombination events and can move as a whole by transposition.


Sign in / Sign up

Export Citation Format

Share Document