scholarly journals Altered Dynamics of Candida albicans Phagocytosis by Macrophages and PMNs When Both Phagocyte Subsets Are Present

mBio ◽  
2013 ◽  
Vol 4 (6) ◽  
Author(s):  
Fiona M. Rudkin ◽  
Judith M. Bain ◽  
Catriona Walls ◽  
Leanne E. Lewis ◽  
Neil A. R. Gow ◽  
...  

ABSTRACT An important first line of defense against Candida albicans infections is the killing of fungal cells by professional phagocytes of the innate immune system, such as polymorphonuclear cells (PMNs) and macrophages. In this study, we employed live-cell video microscopy coupled with dynamic image analysis tools to provide insights into the complexity of C. albicans phagocytosis when macrophages and PMNs were incubated with C. albicans alone and when both phagocyte subsets were present. When C. albicans cells were incubated with only one phagocyte subtype, PMNs had a lower overall phagocytic capacity than macrophages, despite engulfing fungal cells at a higher rate once fungal cells were bound to the phagocyte surface. PMNs were more susceptible to C. albicans-mediated killing than macrophages, irrespective of the number of C. albicans cells ingested. In contrast, when both phagocyte subsets were studied in coculture, the two cell types phagocytosed and cleared C. albicans at equal rates and were equally susceptible to killing by the fungus. The increase in macrophage susceptibility to C. albicans-mediated killing was a consequence of macrophages taking up a higher proportion of hyphal cells under these conditions. In the presence of both PMNs and macrophages, C. albicans yeast cells were predominantly cleared by PMNs, which migrated at a greater speed toward fungal cells and engulfed bound cells more rapidly. These observations demonstrate that the phagocytosis of fungal pathogens depends on, and is modified by, the specific phagocyte subsets present at the site of infection. IMPORTANCE Extensive work investigating fungal cell phagocytosis by macrophages and PMNs of the innate immune system has been carried out. These studies have been informative but have examined this phenomenon only when one phagocyte subset is present. The current study employed live-cell video microscopy to break down C. albicans phagocytosis into its component parts and examine the effect of a single phagocyte subset, versus a mixed phagocyte population, on these individual stages. Through this approach, we identified that the rate of fungal cell engulfment and rate of phagocyte killing altered significantly when both macrophages and PMNs were incubated in coculture with C. albicans compared to the rate of either phagocyte subset incubated alone with the fungus. This research highlights the significance of studying pathogen-host cell interactions with a combination of phagocytes in order to gain a greater understanding of the interactions that occur between cells of the host immune system in response to fungal invasion.

2016 ◽  
Vol 85 (1) ◽  
Author(s):  
Sahar Hasim ◽  
David P. Allison ◽  
Scott T. Retterer ◽  
Alex Hopke ◽  
Robert T. Wheeler ◽  
...  

ABSTRACT Candida albicans is among the most common human fungal pathogens, causing a broad range of infections, including life-threatening systemic infections. The cell wall of C. albicans is the interface between the fungus and the innate immune system. The cell wall is composed of an outer layer enriched in mannosylated glycoproteins (mannan) and an inner layer enriched in β-(1,3)-glucan and chitin. Detection of C. albicans by Dectin-1, a C-type signaling lectin specific for β-(1,3)-glucan, is important for the innate immune system to recognize systemic fungal infections. Increased exposure of β-(1,3)-glucan to the immune system occurs when the mannan layer is altered or removed in a process called unmasking. Nanoscale changes to the cell wall during unmasking were explored in live cells with atomic force microscopy (AFM). Two mutants, the cho1Δ/Δ and kre5Δ/Δ mutants, were selected as representatives that exhibit modest and strong unmasking, respectively. Comparisons of the cho1Δ/Δ and kre5Δ/Δ mutants to the wild type reveal morphological changes in their cell walls that correlate with decreases in cell wall elasticity. In addition, AFM tips functionalized with Dectin-1 revealed that the forces of binding of Dectin-1 to all of the strains were similar, but the frequency of binding was highest for the kre5Δ/Δ mutant, decreased for the cho1Δ/Δ mutant, and rare for the wild type. These data show that nanoscale changes in surface topology are correlated with increased Dectin-1 adhesion and decreased cell wall elasticity. AFM, using tips functionalized with immunologically relevant molecules, can map epitopes of the cell wall and increase our understanding of pathogen recognition by the immune system.


2011 ◽  
Vol 10 (7) ◽  
pp. 932-944 ◽  
Author(s):  
Kimberly M. Brothers ◽  
Zachary R. Newman ◽  
Robert T. Wheeler

ABSTRACTCandida albicansis a human commensal and a clinically important fungal pathogen that grows in both yeast and hyphal forms during human infection. AlthoughCandidacan cause cutaneous and mucosal disease, systemic infections cause the greatest mortality in hospitals. Candidemia occurs primarily in immunocompromised patients, for whom the innate immune system plays a paramount role in immunity. We have developed a novel transparent vertebrate model of candidemia to probe the molecular nature ofCandida-innate immune system interactions in an intact host. Our zebrafish infection model results in a lethal disseminated disease that shares important traits with disseminated candidiasis in mammals, including dimorphic fungal growth, dependence on hyphal growth for virulence, and dependence on the phagocyte NADPH oxidase for immunity. Dual imaging of fluorescently marked immune cells and fungi revealed that phagocytosed yeast cells can remain viable and even divide within macrophages without germinating. Similarly, although we observed apparently killed yeast cells within neutrophils, most yeast cells within these innate immune cells were viable. Exploiting this model, we combined intravital imaging with gene knockdown to show for the first time that NADPH oxidase is required for regulation ofC. albicansfilamentationin vivo. The transparent and easily manipulated larval zebrafish model promises to provide a unique tool for dissecting the molecular basis of phagocyte NADPH oxidase-mediated limitation of filamentous growthin vivo.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
George Sakoulas ◽  
Monika Kumaraswamy ◽  
Armin Kousha ◽  
Victor Nizet

ABSTRACT It is becoming increasingly understood that the current paradigms of in vitro antimicrobial susceptibility testing may have significant shortcomings in predicting activity in vivo. This study evaluated the activity of several antibiotics alone and in combination against clinical isolates of Salmonella enterica serotype Newport (meningitis case) utilizing both conventional and physiological media. In addition, the interactions of these antibiotics with components of the innate immune system were evaluated. Azithromycin, which has performed quite well clinically despite high MICs in conventional media, was shown to be more active in physiological media and to enhance innate immune system killing. Alternatively, chloramphenicol did not show enhanced immune system killing, paralleling its inferior clinical performance to other antibiotics that have been used to treat Salmonella meningitis. These findings are important additions to the building understanding of current in vitro antimicrobial assay limitations that hopefully will amount to future improvements in these assays to better predict clinical efficacy and activity in vivo. This study examines the pharmacodynamics of antimicrobials that are used to treat Salmonella with each other and with key components of the innate immune system. Antimicrobial synergy was assessed using time-kill and checkerboard assays. Antimicrobial interactions with innate immunity were studied by employing cathelicidin LL-37, whole-blood, and neutrophil killing assays. Ceftriaxone and ciprofloxacin were found to be synergistic in vitro against Salmonella enterica serotype Newport. Ceftriaxone, ciprofloxacin, and azithromycin each demonstrated synergy with the human cathelicidin defense peptide LL-37 in killing Salmonella. Exposure of Salmonella to sub-MICs of ceftriaxone resulted in enhanced susceptibility to LL-37, whole blood, and neutrophil killing. The activity of antibiotics in vivo against Salmonella may be underestimated in bacteriologic media lacking components of innate immunity. The pharmacodynamic interactions of antibiotics used to treat Salmonella with each other and with components of innate immunity warrant further study in light of recent findings showing in vivo selection of antimicrobial resistance by single agents in this pathogen. IMPORTANCE It is becoming increasingly understood that the current paradigms of in vitro antimicrobial susceptibility testing may have significant shortcomings in predicting activity in vivo. This study evaluated the activity of several antibiotics alone and in combination against clinical isolates of Salmonella enterica serotype Newport (meningitis case) utilizing both conventional and physiological media. In addition, the interactions of these antibiotics with components of the innate immune system were evaluated. Azithromycin, which has performed quite well clinically despite high MICs in conventional media, was shown to be more active in physiological media and to enhance innate immune system killing. Alternatively, chloramphenicol did not show enhanced immune system killing, paralleling its inferior clinical performance to other antibiotics that have been used to treat Salmonella meningitis. These findings are important additions to the building understanding of current in vitro antimicrobial assay limitations that hopefully will amount to future improvements in these assays to better predict clinical efficacy and activity in vivo.


2013 ◽  
Vol 82 (1) ◽  
pp. 405-412 ◽  
Author(s):  
Sasha J. Rose ◽  
Luiz E. Bermudez

ABSTRACTMycobacterium aviumsubsp.hominissuisis an opportunistic human pathogen that has been shown to form biofilmin vitroandin vivo. Biofilm formationin vivoappears to be associated with infections in the respiratory tract of the host. The reasoning behind howM. aviumsubsp.hominissuisbiofilm is allowed to establish and persist without being cleared by the innate immune system is currently unknown. To identify the mechanism responsible for this, we developed anin vitromodel using THP-1 human mononuclear phagocytes cocultured with establishedM. aviumsubsp.hominissuisbiofilm and surveyed various aspects of the interaction, including phagocyte stimulation and response, bacterial killing, and apoptosis.M. aviumsubsp.hominissuisbiofilm triggered robust tumor necrosis factor alpha (TNF-α) release from THP-1 cells as well as superoxide and nitric oxide production. Surprisingly, the hyperstimulated phagocytes did not effectively eliminate the cells of the biofilm, even when prestimulated with gamma interferon (IFN-γ) or TNF-α or cocultured with natural killer cells (which have been shown to induce anti-M. aviumsubsp.hominissuisactivity when added to THP-1 cells infected with planktonicM. aviumsubsp.hominissuis). Time-lapse microscopy and the TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay determined that contact with theM. aviumsubsp.hominissuisbiofilm led to early, widespread onset of apoptosis, which is not seen until much later in planktonicM. aviumsubsp.hominissuisinfection. Blocking TNF-α or TNF-R1 during interaction with the biofilm significantly reduced THP-1 apoptosis but did not lead to elimination ofM. aviumsubsp.hominissuis. Our data collectively indicate thatM. aviumsubsp.hominissuisbiofilm induces TNF-α-driven hyperstimulation and apoptosis of surveilling phagocytes, which prevents clearance of the biofilm by cells of the innate immune system and allows the biofilm-associated infection to persist.


2013 ◽  
Vol 81 (7) ◽  
pp. 2334-2346 ◽  
Author(s):  
Eric D. Holbrook ◽  
Katherine A. Smolnycki ◽  
Brian H. Youseff ◽  
Chad A. Rappleye

ABSTRACTHistoplasma capsulatumis a respiratory pathogen that infects phagocytic cells. The mechanisms allowingHistoplasmato overcome toxic reactive oxygen molecules produced by the innate immune system are an integral part ofHistoplasma's ability to survive during infection. To probe the contribution ofHistoplasmacatalases in oxidative stress defense, we created and analyzed the virulence defects of mutants lacking CatB and CatP, which are responsible for extracellular and intracellular catalase activities, respectively. Both CatB and CatP protectedHistoplasmafrom peroxide challengein vitroand from antimicrobial reactive oxygen produced by human neutrophils and activated macrophages. Optimal protection required both catalases, as the survival of a double mutant lacking both CatB and CatP was lower than that of single-catalase-deficient cells. Although CatB contributed to reactive oxygen species defensesin vitro, CatB was dispensable for lung infection and extrapulmonary disseminationin vivo. Loss of CatB from a strain also lacking superoxide dismutase (Sod3) did not further reduce the survival ofHistoplasmayeasts. Nevertheless, some catalase function was required for pathogenesis since simultaneous loss of both CatB and CatP attenuatedHistoplasmavirulencein vivo. These results demonstrate thatHistoplasma's dual catalases comprise a system that enablesHistoplasmato efficiently overcome the reactive oxygen produced by the innate immune system.


2008 ◽  
Vol 6 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Mihai G. Netea ◽  
Gordon D. Brown ◽  
Bart Jan Kullberg ◽  
Neil A. R. Gow

2021 ◽  
Vol 12 ◽  
Author(s):  
Richard Felix Kraus ◽  
Michael Andreas Gruber

Neutrophils (polymorphonuclear cells; PMNs) form a first line of defense against pathogens and are therefore an important component of the innate immune response. As a result of poorly controlled activation, however, PMNs can also mediate tissue damage in numerous diseases, often by increasing tissue inflammation and injury. According to current knowledge, PMNs are not only part of the pathogenesis of infectious and autoimmune diseases but also of conditions with disturbed tissue homeostasis such as trauma and shock. Scientific advances in the past two decades have changed the role of neutrophils from that of solely immune defense cells to cells that are responsible for the general integrity of the body, even in the absence of pathogens. To better understand PMN function in the human organism, our review outlines the role of PMNs within the innate immune system. This review provides an overview of the migration of PMNs from the vascular compartment to the target tissue as well as their chemotactic processes and illuminates crucial neutrophil immune properties at the site of the lesion. The review is focused on the formation of chemotactic gradients in interaction with the extracellular matrix (ECM) and the influence of the ECM on PMN function. In addition, our review summarizes current knowledge about the phenomenon of bidirectional and reverse PMN migration, neutrophil microtubules, and the microtubule organizing center in PMN migration. As a conclusive feature, we review and discuss new findings about neutrophil behavior in cancer environment and tumor tissue.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert B. Williams ◽  
Michael C. Lorenz

ABSTRACT The phagocytic cells of the innate immune system are an essential first line of antimicrobial defense, and yet Candida albicans, one of the most problematic fungal pathogens, is capable of resisting the stresses imposed by the macrophage phagosome, eventually resulting in the destruction of the phagocyte. C. albicans rapidly adapts to the phagosome by upregulating multiple alternative carbon utilization pathways, particularly those for amino acids, carboxylic acids, and N-acetylglucosamine (GlcNAc). Here, we report that C. albicans recognizes these carbon sources both as crucial nutrients and as independent signals in its environment. Even in the presence of glucose, each carbon source promotes increased resistance to a unique profile of stressors; lactate promotes increased resistance to osmotic and cell wall stresses, amino acids increased resistance to oxidative and nitrosative stresses, and GlcNAc increased resistance to oxidative stress and caspofungin, while all three alternative carbon sources have been shown to induce resistance to fluconazole. Moreover, we show mutants incapable of utilizing these carbon sources, in particular, strains engineered to be defective in all three pathways, are significantly attenuated in both macrophage and mouse models, with additive effects observed as multiple carbon pathways are eliminated, suggesting that C. albicans simultaneously utilizes multiple carbon sources within the macrophage phagosome and during disseminated candidiasis. Taking the data together, we propose that, in addition to providing energy to the pathogen within host environments, alternative carbon sources serve as niche-specific priming signals that allow C. albicans to recognize microenvironments within the host and to prepare for stresses associated with that niche, thus promoting host adaptation and virulence. IMPORTANCE Candida albicans is a fungal pathogen and a significant cause of morbidity and mortality, particularly in people with defects, sometimes minor ones, in innate immunity. The phagocytes of the innate immune system, particularly macrophages and neutrophils, generally restrict this organism to its normal commensal niches, but C. albicans shows a robust and multifaceted response to these cell types. Inside macrophages, a key component of this response is the activation of multiple pathways for the utilization of alternative carbon sources, particularly amino acids, carboxylic acids, and N-acetylglucosamine. These carbon sources are key sources of energy and biomass but also independently promote stress resistance, induce cell wall alterations, and affect C. albicans interactions with macrophages. Engineered strains incapable of utilizing these alternative carbon pathways are attenuated in infection models. These data suggest that C. albicans recognizes nutrient composition as an indicator of specific host environments and tailors its responses accordingly.


2014 ◽  
Vol 58 (9) ◽  
pp. 5594-5597 ◽  
Author(s):  
Brooke A. Napier ◽  
Victor Band ◽  
Eileen M. Burd ◽  
David S. Weiss

ABSTRACTHere, we describe the first identification of colistin-heteroresistantEnterobacter cloacaein the United States. Treatment of this isolate with colistin increased the frequency of the resistant subpopulation and induced cross-resistance to the host antimicrobial lysozyme. This is the first description of heteroresistance conferring cross-resistance to a host antimicrobial and suggests that clinical treatment with colistin may inadvertently select for bacteria that are resistant to components of the host innate immune system.


Mycoses ◽  
2011 ◽  
Vol 54 (6) ◽  
pp. e718-e825 ◽  
Author(s):  
Renzo F. Martino ◽  
Roberto C. Davicino ◽  
María A. Mattar ◽  
Yolanda A. Casali ◽  
Silvia G. Correa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document