scholarly journals FtsZ-Dependent Elongation of a Coccoid Bacterium

mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Ana R. Pereira ◽  
Jen Hsin ◽  
Ewa Król ◽  
Andreia C. Tavares ◽  
Pierre Flores ◽  
...  

ABSTRACT A mechanistic understanding of the determination and maintenance of the simplest bacterial cell shape, a sphere, remains elusive compared with that of more complex shapes. Cocci seem to lack a dedicated elongation machinery, and a spherical shape has been considered an evolutionary dead-end morphology, as a transition from a spherical to a rod-like shape has never been observed in bacteria. Here we show that a Staphylococcus aureus mutant (M5) expressing the ftsZ G193D allele exhibits elongated cells. Molecular dynamics simulations and in vitro studies indicate that FtsZ G193D filaments are more twisted and shorter than wild-type filaments. In vivo , M5 cell wall deposition is initiated asymmetrically, only on one side of the cell, and progresses into a helical pattern rather than into a constricting ring as in wild-type cells. This helical pattern of wall insertion leads to elongation, as in rod-shaped cells. Thus, structural flexibility of FtsZ filaments can result in an FtsZ-dependent mechanism for generating elongated cells from cocci. IMPORTANCE The mechanisms by which bacteria generate and maintain even the simplest cell shape remain an elusive but fundamental question in microbiology. In the absence of examples of coccus-to-rod transitions, the spherical shape has been suggested to be an evolutionary dead end in morphogenesis. We describe the first observation of the generation of elongated cells from truly spherical cocci, occurring in a Staphylococcus aureus mutant containing a single point mutation in its genome, in the gene encoding the bacterial tubulin homologue FtsZ. We demonstrate that FtsZ-dependent cell elongation is possible, even in the absence of dedicated elongation machinery.

2016 ◽  
Vol 2 (10) ◽  
pp. e1501695 ◽  
Author(s):  
Ivan V. Smirnov ◽  
Andrey V. Golovin ◽  
Spyros D. Chatziefthimiou ◽  
Anastasiya V. Stepanova ◽  
Yingjie Peng ◽  
...  

In vitro selection of antibodies from large repertoires of immunoglobulin (Ig) combining sites using combinatorial libraries is a powerful tool, with great potential for generating in vivo scavengers for toxins. However, addition of a maturation function is necessary to enable these selected antibodies to more closely mimic the full mammalian immune response. We approached this goal using quantum mechanics/molecular mechanics (QM/MM) calculations to achieve maturation in silico. We preselected A17, an Ig template, from a naïve library for its ability to disarm a toxic pesticide related to organophosphorus nerve agents. Virtual screening of 167,538 robotically generated mutants identified an optimum single point mutation, which experimentally boosted wild-type Ig scavenger performance by 170-fold. We validated the QM/MM predictions via kinetic analysis and crystal structures of mutant apo-A17 and covalently modified Ig, thereby identifying the displacement of one water molecule by an arginine as delivering this catalysis.


Haematologica ◽  
2021 ◽  
Author(s):  
Osheiza Abdulmalik ◽  
Noureldien H. E. Darwish ◽  
Vandhana Muralidharan-Chari ◽  
Maii Abu Taleb ◽  
Shaker A. Mousa

Sickle cell disease (SCD) is an autosomal recessive genetic disease caused by a single point mutation, resulting in abnormal sickle hemoglobin (HbS). During hypoxia or dehydration, HbS polymerizes to form insoluble aggregates and induces sickling of red blood cells (RBCs). RBC sickling increases adhesiveness of RBCs to alter the rheological properties of the blood and triggers inflammatory responses, leading to hemolysis and vaso-occlusive crisis sequelae. Unfractionated heparin (UFH) and low-molecular weight heparins (LMWH) have been suggested as treatments to relieve coagulation complications in SCD. However, they are associated with bleeding complications after repeated dosing. An alternative sulfated nonanticoagulant heparin derivative (S-NACH) was previously reported to have none to low systemic anticoagulant activity and no bleeding side effects, and it interfered with P-selectindependent binding of sickle cells to endothelial cells, with concomitant decrease in the levels of adhesion biomarkers in SCD mice. S-NACH has been further engineered and structurally enhanced to bind with and modify HbS to directly inhibit sickling, thus employing a multimodal approach. Here, we show that S-NACH can (i) directly engage in Schiff-base reactions with HbS to decrease RBC sickling under both normoxia and hypoxia in vitro, ii) prolong the survival of SCD mice under hypoxia, and (iii) regulate the altered steady state levels of pro- and antiinflammatory cytokines. Thus, our proof of concept in vitro and in vivo preclinical studies demonstrate that the multimodal S-NACH is a highly promising candidate for development into an improved and optimized alternative to LMWHs for the treatment of patients with SCD.


2000 ◽  
Vol 74 (23) ◽  
pp. 11027-11039 ◽  
Author(s):  
Eran Bacharach ◽  
Jason Gonsky ◽  
Kimona Alin ◽  
Marianna Orlova ◽  
Stephen P. Goff

ABSTRACT A yeast two-hybrid screen for cellular proteins that interact with the murine leukemia virus (MuLV) Gag protein resulted in the identification of nucleolin, a host protein known to function in ribosome assembly. The interacting fusions contained the carboxy-terminal 212 amino acids of nucleolin [Nuc(212)]. The nucleocapsid (NC) portion of Gag was necessary and sufficient to mediate the binding to Nuc(212). The interaction of Gag with Nuc(212) could be demonstrated in vitro and was manifested in vivo by the NC-dependent incorporation of Nuc(212) inside MuLV virions. Overexpression of Nuc(212), but not full-length nucleolin, potently and specifically blocked MuLV virion assembly and/or release. A mutant of MuLV, selected to specifically disrupt the binding to Nuc(212), was found to be severely defective for virion assembly. This mutant harbors a single point mutation in capsid (CA) adjacent to the CA-NC junction, suggesting a role for this region in Moloney MuLV assembly. These experiments demonstrate that selection for proteins that bind assembly domain(s) can yield potent inhibitors of virion assembly. These experiments also raise the possibility that a nucleolin-Gag interaction may be involved in virion assembly.


2020 ◽  
Vol 27 (4) ◽  
pp. 306
Author(s):  
Firzan Nainu ◽  
M. Natsir Djide ◽  
Subehan Subehan ◽  
Sartini Sartini ◽  
Tri Puspita Roska ◽  
...  

The rise of antibiotic-resistant Staphylococcus aureus-related clinical cases is an alarming chronicle for global communities. This research was conducted to examine the antistaphylococcal effect of roselle (Hibiscus sabdariffa L.) calyx fractions in the Drosophila model. In the infection experiment, wild-type and immunodeficient Drosophila were pricked with S. aureus and subsequently subjected to fly survivorship and colony-forming assays, in the presence or absence of roselle calyx fractions. The Involvement of immune stimulation in the host antibacterial protection was assessed in vitro using cell-based luciferase reporter assay and in vivo using RT-qPCR analysis on adult flies. A declining rate of fly survivorship and augmentation of bacterial growth were observable in S. aureus-infected wild-type flies but subject to improvement in the presence of roselle calyx fractions. Cell-based analysis revealed the absence of host immune stimulation via Drosophila Toll pathway and roselle calyx fractions-treated immune-deficient flies lacking for components in the Toll pathway were protected from infection-induced early death phenotype and harbored reduced number of S. aureus colonies. Overall, our data confirmed the in vivo anti-staphylococcal activity of roselle calyx fractions in Drosophila infection model and such protective signature was devoid of host immune stimulation.


1999 ◽  
Vol 19 (3) ◽  
pp. 1627-1639 ◽  
Author(s):  
Alexander M. Erkine ◽  
Serena F. Magrogan ◽  
Edward A. Sekinger ◽  
David S. Gross

ABSTRACT Previous work has shown that heat shock factor (HSF) plays a central role in remodeling the chromatin structure of the yeastHSP82 promoter via constitutive interactions with its high-affinity binding site, heat shock element 1 (HSE1). The HSF-HSE1 interaction is also critical for stimulating both basal (noninduced) and induced transcription. By contrast, the function of the adjacent, inducibly occupied HSE2 and -3 is unknown. In this study, we examined the consequences of mutations in HSE1, HSE2, and HSE3 on HSF binding and transactivation. We provide evidence that in vivo, HSF binds to these three sites cooperatively. This cooperativity is seen both before and after heat shock, is required for full inducibility, and can be recapitulated in vitro on both linear and supercoiled templates. Quantitative in vitro footprinting reveals that occupancy of HSE2 and -3 by Saccharomyces cerevisiae HSF (ScHSF) is enhanced ∼100-fold through cooperative interactions with the HSF-HSE1 complex. HSE1 point mutants, whose basal transcription is virtually abolished, are functionally compensated by cooperative interactions with HSE2 and -3 following heat shock, resulting in robust inducibility. Using a competition binding assay, we show that the affinity of recombinant HSF for the full-length HSP82promoter is reduced nearly an order of magnitude by a single-point mutation within HSE1, paralleling the effect of these mutations on noninduced transcript levels. We propose that the remodeled chromatin phenotype previously shown for HSE1 point mutants (and lost in HSE1 deletion mutants) stems from the retention of productive, cooperative interactions between HSF and its target binding sites.


Anemia ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Mário Angelo Claudino ◽  
Kleber Yotsumoto Fertrin

Sickle cell anemia is one of the best studied inherited diseases, and despite being caused by a single point mutation in theHBBgene, multiple pleiotropic effects of the abnormal hemoglobin S production range from vaso-occlusive crisis, stroke, and pulmonary hypertension to osteonecrosis and leg ulcers. Urogenital function is not spared, and although priapism is most frequently remembered, other related clinical manifestations have been described, such as nocturia, enuresis, increased frequence of lower urinary tract infections, urinary incontinence, hypogonadism, and testicular infarction. Studies on sickle cell vaso-occlusion and priapism using bothin vitroandin vivomodels have shed light on the pathogenesis of some of these events. The authors review what is known about the deleterious effects of sickling on the genitourinary tract and how the role of cyclic nucleotides signaling and protein kinases may help understand the pathophysiology underlying these manifestations and develop novel therapies in the setting of urogenital disorders in sickle cell disease.


1991 ◽  
Vol 99 (2) ◽  
pp. 351-362 ◽  
Author(s):  
M. Hatzfeld ◽  
K. Weber

All known intermediate filament (IF) proteins display -8 -4 -1 a consensus sequence TYRKLLEGE at the carboxyl end of the rod domain. To analyse the contribution of this sequence to the formation of IF we have changed two of the invariant positions of this motif by site-directed mutagenesis. We produced three mutant keratins, each containing a single point mutation. Tyrosine at position -8 was changed to alanine in keratin K8 (K8Y----A-8) and keratin K18 (K18Y----A-8) and leucine at position -4 was changed to glycine in keratin K18 (K18L----G-4). Mutant keratins were expressed in Escherichia coli, purified and analysed for their filament-forming capacity in vitro using either the complementary wild-type keratin or the corresponding mixture of mutant keratins. In standard filament buffer (50 mM Tris-HCl, pH7.5), assembly involving any of the mutants leads to large electron-dense aggregates instead of normal IF. In order to explain this effect, we studied the process of filament formation in more detail. Whereas the formation of tetramers in buffers containing 4M urea is unaffected, the elongation process seems slowed down. In buffer of lower ionic strength (10 mM Tris-HCl, pH7.5) mutant keratins K8Y----A-8 plus K18Y----A-8 become able to form long filaments, although short filaments and protofilamentous material are still detected. The filaments formed differ from normal keratin IF by their remarkable tendency to aggregate into thick cables. Assemblies involving K18L----G-4 can only form short IF lengths. The dense aggregates formed in standard filament buffer are able to dissociate into IF and their fragments upon dialysis into 10 mM Tris-HCl, pH7.5. The results show that the consensus sequence is needed for IF formation under normal conditions and that already one mutation per heterodimer affects the assembly.


2016 ◽  
Vol 38 (6) ◽  
pp. 2094-2102 ◽  
Author(s):  
Shaghayegh Tavakoli Tabazavareh ◽  
Aaron Seitz ◽  
Peter Jernigan ◽  
Carolin Sehl ◽  
Simone Keitsch ◽  
...  

Background: Pulmonary Staphylococcus aureus (S. aureus) infections occur early in a high percentage of cystic fibrosis (CF) patients and it is believed that these infections facilitate further colonization of CF lungs with Pseudomonas aeruginosa (P. aeruginosa). Previous studies demonstrated a marked reduction of sphingosine in tracheal and bronchial epithelial cells in CF compared to wild type mice, while ceramide is massively increased in CF mice. Methods: We investigated the effect of C18-sphingosine and C16-ceramide on S. aureus in vitro. Based on our results we performed pulmonary infections with S. aureus and tested the influence of sphingosine inhalation. Results: In vitro incubation of S. aureus with C18-sphingosine rapidly killed S. aureus, while C16-ceramide did not affect bacterial survival, but abrogated the effect of C18-sphingosine when applied together. The in vivo infection experiments revealed a high susceptibility of CF mice to pulmonary infection with S. aureus. Inhalation of C18-sphingosine rescued CF mice from pulmonary infections with different clinical S. aureus isolates, including a methicillin-resistant S. aureus (MRSA) strain. Conclusions: Our data indicate that the imbalance between ceramide and sphingosine in the CF respiratory tract prevents killing of S. aureus and causes the high susceptibility of CF mice to pulmonary S. aureus infections.


2007 ◽  
Vol 51 (2) ◽  
pp. 475-482 ◽  
Author(s):  
Caroline Kusuma ◽  
Anna Jadanova ◽  
Tanya Chanturiya ◽  
John F. Kokai-Kun

ABSTRACT Lysostaphin is under development as a therapy for serious staphylococcal infections. During preclinical development, lysostaphin-resistant Staphylococcus aureus variants have occasionally been reported in vitro and in vivo. The acquisition of resistance to this drug, however, leads to a significant increase in β-lactam antibiotic susceptibility, rendering methicillin-resistant S. aureus (MRSA) strains functionally methicillin susceptible. In this study, we have demonstrated that the development of lysostaphin resistance by two strains of MRSA also led to a loss of fitness in the variants. Consistent with the mutations found in previously reported lysostaphin-resistant S. aureus variants, these two variants had mutations in their femA genes, resulting in nonfunctional FemA proteins and, thus, monoglycine cross bridges in the peptidoglycan. The diminished fitness of the lysostaphin-resistant variants was reflected by (i) a reduced logarithmic growth rate, with the variants being outcompeted in cocultures by their wild-type parental strains; (ii) increased susceptibility to elevated temperatures; and (iii) at least fivefold less virulence of the lysostaphin-resistant variants than their wild-type strains in a mouse kidney infection model, with the lysostaphin-resistant variants being outcompeted in coinfections with their wild-type parental strains. During a 14-day serial passage without selective pressure, the lysostaphin-resistant variants failed to develop compensatory mutations which restored their fitness. These results suggest that should lysostaphin resistance due to an alteration in the FemA function emerge in S. aureus during therapy with lysostaphin, the resistant variants would be less fit and less virulent, and, in addition, infections with these strains would be easily treatable with β-lactam antibiotics.


2002 ◽  
Vol 46 (1) ◽  
pp. 191-195 ◽  
Author(s):  
Laura E. Lawrence ◽  
MaryBeth Frosco ◽  
Brenda Ryan ◽  
Susan Chaniewski ◽  
Hyekyung Yang ◽  
...  

ABSTRACT The antistaphylococcal activities of BMS-284756 (T-3811ME), levofloxacin, moxifloxacin, and ciprofloxacin were compared against wild-type and grlA and grlA/gyrA mutant strains of Staphylococcus aureus. BMS-284756 was the most active quinolone tested, with MICs and minimal bactericidal concentrations against S. aureus wild-type strain MT5, grlA mutant MT5224c4, and grlA/gyrA mutant EN8 of 0.03 and 0.06, 0.125 and 0.125, and 4 and 4 μg/ml, respectively. In the time-kill studies, BMS-284756 and levofloxacin exhibited rapid killing against all strains. Ciprofloxacin, however, was not bactericidal for the double mutant, EN8. BMS-284756 and levofloxacin were bactericidal (3 log10 decrease in CFU/ml) against the MT5 and MT5224c4 strains at two and four times the MIC within 2 to 4 h. Against EN8, BMS-284756 was bactericidal within 4 h at two and four times the MIC, and levofloxacin achieved similar results within 4 to 6 h. Both the wild-type strain MT5 and grlA mutant MT5224c4 should be considered susceptible to both BMS-284756 and levofloxacin, and both quinolones are predicted to have clinical efficacy. The in vivo efficacy of BMS-284756, levofloxacin, and moxifloxacin against S. aureus strain ISP794 and its single mutant 2C6(1)-1 directly reflected the in vitro activity: increased MICs correlated with decreased in vivo efficacy. The 50% protective doses of BMS-284756 against wild-type and mutant strains were 2.2 and 1.6 mg/kg of body weight/day, respectively, compared to the levofloxacin values of 16 and 71 mg/kg/day and moxifloxacin values of 4.7 and 61.6 mg/kg/day. BMS-284756 was more potent than levofloxacin and equipotent with moxifloxacin against ISP794 both in vitro and in vivo, while BMS-284756 was more potent than levofloxacin and moxifloxacin against 2C6(1)-1.


Sign in / Sign up

Export Citation Format

Share Document