scholarly journals CdrS Is a Global Transcriptional Regulator Influencing Cell Division in Haloferax volcanii

mBio ◽  
2021 ◽  
Author(s):  
Yan Liao ◽  
Verena Vogel ◽  
Sabine Hauber ◽  
Jürgen Bartel ◽  
Omer S. Alkhnbashi ◽  
...  

Cell division is a central mechanism of life and is essential for growth and development. Members of the Bacteria and Eukarya have different mechanisms for cell division, which have been studied in detail.

2020 ◽  
Vol 367 (1) ◽  
Author(s):  
Julia-Beate Tästensen ◽  
Ulrike Johnsen ◽  
Andreas Reinhardt ◽  
Marius Ortjohann ◽  
Peter Schönheit

ABSTRACT The haloarchaeon Haloferax volcanii was found to grow on D-galactose as carbon and energy source. Here we report a comprehensive analysis of D-galactose catabolism in H. volcanii. Genome analyses indicated a cluster of genes encoding putative enzymes of the DeLey–Doudoroff pathway for D-galactose degradation including galactose dehydrogenase, galactonate dehydratase, 2-keto-3-deoxygalactonate kinase and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolase. The recombinant galactose dehydrogenase and galactonate dehydratase showed high specificity for D-galactose and galactonate, respectively, whereas KDPGal aldolase was promiscuous in utilizing KDPGal and also the C4 epimer 2-keto-3-deoxy-6-phosphogluconate as substrates. Growth studies with knock-out mutants indicated the functional involvement of galactose dehydrogenase, galactonate dehydratase and KDPGal aldolase in D-galactose degradation. Further, the transcriptional regulator GacR was identified, which was characterized as an activator of genes of the DeLey–Doudoroff pathway. Finally, genes were identified encoding components of an ABC transporter and a knock-out mutant of the substrate binding protein indicated the functional involvement of this transporter in D-galactose uptake. This is the first report of D-galactose degradation via the DeLey–Doudoroff pathway in the domain of archaea.


2019 ◽  
Vol 62 (1) ◽  
pp. 353-360 ◽  
Author(s):  
Wenbo Cui ◽  
Nuan Liu ◽  
Xuelian Zhang ◽  
Yanghai Zhang ◽  
Lei Qu ◽  
...  

Abstract. Cell division cycle 25A (CDC25A), a member of the CDC25 family of phosphatases, is required for progression from G1 to the S phase of the cell cycle. CDC25A provides an essential function during early embryonic development in mice, suggesting that it plays an important role in growth and development. In this study, we used mathematical expectation (ME) methods to identify a 20-bp insertion/deletion (indel) polymorphism of CDC25A gene in Shaanbei White Cashmere (SBWC) goats. We also investigated the association between this 20-bp indel and growth-related traits in SBWC goats. Association results showed that the indel was related to growth traits (height at hip cross, cannon circumference, and cannon circumference index) in SBWC goats. The height at hip cross of individuals with insertion/insertion (II) genotype was higher than those with insertion/deletion (ID) genotype (P=0.02); on the contrary, the cannon circumference and cannon circumference index of individuals with ID genotype were superior when compared with those with II genotype (P=0.017 and P=0.009). These findings suggest that the 20-bp indel in the CDC25A gene significantly affects growth-related traits, and could be utilized as a candidate marker for marker-assisted selection (MAS) in the cashmere goat industry.


Development ◽  
1998 ◽  
Vol 125 (5) ◽  
pp. 909-918 ◽  
Author(s):  
J.D. Faure ◽  
P. Vittorioso ◽  
V. Santoni ◽  
V. Fraisier ◽  
E. Prinsen ◽  
...  

The control of cell division by growth regulators is critical to proper plant development. The isolation of single-gene mutants altered in the response to plant hormones should permit the identification of essential genes controlling the growth and development of plants. We have isolated mutants pasticcino belonging to 3 complementation groups (pas1, pas2, pas3) in the progeny of independent ethyl methane sulfonate and T-DNA mutagenized Arabidopsis thaliana plants. The screen was performed in the presence or absence of cytokinin. The mutants isolated were those that showed a significant hypertrophy of their apical parts when grown on cytokinin-containing medium. The pas mutants have altered embryo, leaf and root development. They display uncoordinated cell divisions which are enhanced by cytokinin. Physiological and biochemical analyses show that cytokinins are probably involved in pas phenotypes. The PAS genes have been mapped respectively to chromosomes 3, 5 and 1 and represent new plant genes involved in the control of cell division and plant development.


Cells divide for three main reasons: growth and development, replace worn-out or injured cells, and reproduction of offspring. Cell division is part of the cell cycle divided into five distinct phases. The diploid state of the cell is the normal chromosomal number in species. During sexual reproduction, the cell's chromosome number is reduced to a haploid state to ensure constancy in chromosome number and thus continuation of the species. The process of cell division is controlled by regulatory proteins. Mitosis occurs in all body cells and is divided into four phases. Meiosis, which occurs in only the germ cells involved in reproduction, divides the chromosomes in two rounds termed meiosis I and meiosis II (reduction division). The human lifecycle starts with gametogenesis, the process that forms gametes which then combine to form a zygote. The zygote quickly becomes an embryo and develops rapidly into a foetus. This chapter explores cell division.


2010 ◽  
Vol 191 (5) ◽  
pp. 915-922 ◽  
Author(s):  
Nicholas D. Poulson ◽  
Terry Lechler

Progenitor cells must balance self-amplification and production of differentiated progeny during development and homeostasis. In the epidermis, progenitors divide symmetrically to increase surface area and asymmetrically to promote stratification. In this study, we show that individual epidermal cells can undergo both types of division, and therefore, the balance is provided by the sum of individual cells’ choices. In addition, we define two control points for determining a cell’s mode of division. First is the expression of the mouse Inscuteable gene, which is sufficient to drive asymmetric cell division (ACD). However, there is robust control of division orientation as excessive ACDs are prevented by a change in the localization of NuMA, an effector of spindle orientation. Finally, we show that p63, a transcriptional regulator of stratification, does not control either of these processes. These data have uncovered two important regulatory points controlling ACD in the epidermis and allow a framework for analysis of how external cues control this important choice.


Sign in / Sign up

Export Citation Format

Share Document