scholarly journals MARCH8 Restricts Influenza A Virus Infectivity but Does Not Downregulate Viral Glycoprotein Expression at the Surface of Infected Cells

mBio ◽  
2021 ◽  
Author(s):  
Fernando Villalón-Letelier ◽  
Andrew G. Brooks ◽  
Sarah L. Londrigan ◽  
Patrick C. Reading

The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced incorporation into nascent virions. Here, we show that MARCH8 restricts IAV at a late stage in virus replication, but this was not associated with reduced expression of IAV envelope glycoproteins on the surfaces of infected cells, pointing to a distinct mechanism of antiviral activity.

Author(s):  
Dong-In Kim ◽  
Yong-Bin Cho ◽  
Younghyun Lim ◽  
So-Hee Hong ◽  
Bumsuk Hahm ◽  
...  

Chios mastic gum (CMG), a resin of the mastic tree (Pistacia lentiscus var. chia), has been used to treat multiple disorders caused by gastrointestinal malfunctions and bacterial infections for more than 2500 years. However, little is known about CMG’s antiviral activity. CMG is known to influence multiple cellular processes such as cell proliferation, differentiation and apoptosis. As virus replication is largely dependent on the host cellular metabolism, it is conceivable that CMG regulates virus infectivity. Therefore, in this study, we evaluated CMG’s potential as an antiviral drug to treat influenza A virus (IAV) infection. CMG treatment dramatically reduced the cytopathogenic effect and production of RNAs, proteins and infectious particles of IAV. Interestingly, CMG interfered with the early stage of the virus life cycle after viral attachment. Importantly, the administration of CMG greatly ameliorated morbidity and mortality in IAV-infected mice. The results suggest that CMG displays a potent anti-IAV activity by blocking the early stage of viral replication. Thus, mastic gum could be exploited as a novel therapeutic agent against IAV infection.


2010 ◽  
Vol 107 (5) ◽  
pp. 2253-2258 ◽  
Author(s):  
Chen Zhao ◽  
Tien-Ying Hsiang ◽  
Rei-Lin Kuo ◽  
Robert M. Krug

ISG15 is an IFN-α/β–induced, ubiquitin-like protein that is conjugated to a wide array of cellular proteins through the sequential action of three conjugation enzymes that are also induced by IFN-α/β. Recent studies showed that ISG15 and/or its conjugates play an important role in protecting cells from infection by several viruses, including influenza A virus. However, the mechanism by which ISG15 modification exerts antiviral activity has not been established. Here we extend the repertoire of ISG15 targets to a viral protein by demonstrating that the NS1 protein of influenza A virus (NS1A protein), an essential, multifunctional protein, is ISG15 modified in virus-infected cells. We demonstrate that the major ISG15 acceptor site in the NS1A protein in infected cells is a critical lysine residue (K41) in the N-terminal RNA-binding domain (RBD). ISG15 modification of K41 disrupts the association of the NS1A RBD domain with importin-α, the protein that mediates nuclear import of the NS1A protein, whereas the RBD retains its double-stranded RNA-binding activity. Most significantly, we show that ISG15 modification of K41 inhibits influenza A virus replication and thus contributes to the antiviral action of IFN-β. We also show that the NS1A protein directly and specifically binds to Herc5, the major E3 ligase for ISG15 conjugation in human cells. These results establish a “loss of function” mechanism for the antiviral activity of the IFN-induced ISG15 conjugation system, namely, that it inhibits viral replication by conjugating ISG15 to a specific viral protein, thereby inhibiting its function.


2021 ◽  
Author(s):  
Yueyue Liu ◽  
Shuqian Lin ◽  
Yunhui Xie ◽  
Lu Zhao ◽  
Haibo Du ◽  
...  

Abstract As a natural antiviral regulator, phospholipid scramblase 1 (PLSCR1) has been shown to inhibit influenza virus replication in infected cells through interacting with NP of influenza A virus (IAV). But its antiviral function as well as the underlying regulatory mechanism has not been examined in vivo. In the present work, we show that PLSCR1 expression is decreased in H1N1 SIV-infected mice, and Plscr1−/−mice are more susceptible to H1N1 SIV infection. By performing yeast two-hybrid screening, we identified immunoglobulin-like domain-containing receptor 1 (ILDR1) as a novel PLSCR1-binding partner. ILDR1 is highly expressed in the lungs, and its expression level is increased after virus infection. Interestingly, ILDR1 could not directly interact with virus NP protein, but could combine with PLSCR1 competitively. Our data indicates that there is a previously unidentified PLSCR1-ILDR1-NP regulatory pathway playing a vital role in limiting IAV infection, which provides novel insights into IAV-host interactions.


2015 ◽  
Vol 112 (45) ◽  
pp. 14048-14053 ◽  
Author(s):  
Chien-Hung Liu ◽  
Ligang Zhou ◽  
Guifang Chen ◽  
Robert M. Krug

Previous studies showed that ZAPL (PARP-13.1) exerts its antiviral activity via its N-terminal zinc fingers that bind the mRNAs of some viruses, leading to mRNA degradation. Here we identify a different antiviral activity of ZAPL that is directed against influenza A virus. This ZAPL antiviral activity involves its C-terminal PARP domain, which binds the viral PB2 and PA polymerase proteins, leading to their proteasomal degradation. After the PB2 and PA proteins are poly(ADP-ribosylated), they are associated with the region of ZAPL that includes both the PARP domain and the adjacent WWE domain that is known to bind poly(ADP-ribose) chains. These ZAPL-associated PB2 and PA proteins are then ubiquitinated, followed by proteasomal degradation. This antiviral activity is counteracted by the viral PB1 polymerase protein, which binds close to the PARP domain and causes PB2 and PA to dissociate from ZAPL and escape degradation, explaining why ZAPL only moderately inhibits influenza A virus replication. Hence influenza A virus has partially won the battle against this newly identified ZAPL antiviral activity. Eliminating PB1 binding to ZAPL would be expected to substantially increase the inhibition of influenza A virus replication, so that the PB1 interface with ZAPL is a potential target for antiviral development.


2014 ◽  
Vol 89 (5) ◽  
pp. 2764-2776 ◽  
Author(s):  
Daphne A. Cooper ◽  
Shuvojit Banerjee ◽  
Arindam Chakrabarti ◽  
Adolfo García-Sastre ◽  
Jay R. Hesselberth ◽  
...  

ABSTRACTInfluenza A virus (IAV) infections are influenced by type 1 interferon-mediated antiviral defenses and by viral countermeasures to these defenses. When IAV NS1 protein is disabled, RNase L restricts virus replication; however, the RNAs targeted for cleavage by RNase L under these conditions have not been defined. In this study, we used deep-sequencing methods to identify RNase L cleavage sites within host and viral RNAs from IAV PR8ΔNS1-infected A549 cells. Short hairpin RNA knockdown of RNase L allowed us to distinguish between RNase L-dependent and RNase L-independent cleavage sites. RNase L-dependent cleavage sites were evident at discrete locations in IAV RNA segments (both positive and negative strands). Cleavage in PB2, PB1, and PA genomic RNAs suggests that viral RNPs are susceptible to cleavage by RNase L. Prominent amounts of cleavage mapped to specific regions within IAV RNAs, including some areas of increased synonymous-site conservation. Among cellular RNAs, RNase L-dependent cleavage was most frequent at precise locations in rRNAs. Our data show that RNase L targets specific sites in both host and viral RNAs to restrict influenza virus replication when NS1 protein is disabled.IMPORTANCERNase L is a critical component of interferon-regulated and double-stranded-RNA-activated antiviral host responses. We sought to determine how RNase L exerts its antiviral activity during influenza virus infection. We enhanced the antiviral activity of RNase L by disabling a viral protein, NS1, that inhibits the activation of RNase L. Then, using deep-sequencing methods, we identified the host and viral RNAs targeted by RNase L. We found that RNase L cleaved viral RNAs and rRNAs at very precise locations. The direct cleavage of IAV RNAs by RNase L highlights an intimate battle between viral RNAs and an antiviral endonuclease.


2009 ◽  
Vol 83 (12) ◽  
pp. 5971-5977 ◽  
Author(s):  
Tien-Ying Hsiang ◽  
Chen Zhao ◽  
Robert M. Krug

ABSTRACT The ubiquitin-like ISG15 protein, as well as its conjugating enzymes, is induced by type I interferons (IFNs). Experiments using ISG15 knockout (ISG15−/−) mice established that ISG15 and/or its conjugation inhibits the replication of influenza A virus. However, in contrast to the virus inhibition results for mice, the rates of virus replication in ISG15+/+ and ISG15−/− mouse embryo fibroblasts in tissue culture were similar. Here we focus on human tissue culture cells and on the effect of ISG15 and/or its conjugation on influenza A virus gene expression and replication in such cells. We demonstrate that IFN-induced antiviral activity against influenza A virus in human cells is significantly alleviated by inhibiting ISG15 conjugation using small interfering RNAs directed against ISG15-conjugating enzymes. IFN-induced antiviral activity against influenza A virus protein synthesis was reduced 5- to 20-fold by suppressing ISG15 conjugation. The amounts of the viral proteins that were restored by these siRNA treatments were approximately 40 to 50% of the amounts produced in cells that were not pretreated with IFN. Further, we show that ISG15 conjugation inhibits influenza A virus replication 10- to 20-fold at early times after infection in human cells. These results show that ISG15 conjugation plays a substantial role in the antiviral state induced by IFN in human cells. In contrast, we show that in mouse embryo fibroblasts ISG15 conjugation not only does not affect influenza A virus replication but also does not contribute to the IFN-induced antiviral activity against influenza A virus gene expression.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 509 ◽  
Author(s):  
Meenakshi Tiwary ◽  
Robert J. Rooney ◽  
Swantje Liedmann ◽  
Kim S. LeMessurier ◽  
Amali E. Samarasinghe

Eosinophils, previously considered terminally differentiated effector cells, have multifaceted functions in tissues. We previously found that allergic mice with eosinophil-rich inflammation were protected from severe influenza and discovered specialized antiviral effector functions for eosinophils including promoting cellular immunity during influenza. In this study, we hypothesized that eosinophil responses during the early phase of influenza contribute to host protection. Using in vitro and in vivo models, we found that eosinophils were rapidly and dynamically regulated upon influenza A virus (IAV) exposure to gain migratory capabilities to traffic to lymphoid organs after pulmonary infection. Eosinophils were capable of neutralizing virus upon contact and combinations of eosinophil granule proteins reduced virus infectivity through hemagglutinin inactivation. Bi-directional crosstalk between IAV-exposed epithelial cells and eosinophils occurred after IAV infection and cross-regulation promoted barrier responses to improve antiviral defenses in airway epithelial cells. Direct interactions between eosinophils and airway epithelial cells after IAV infection prevented virus-induced cytopathology in airway epithelial cells in vitro, and eosinophil recipient IAV-infected mice also maintained normal airway epithelial cell morphology. Our data suggest that eosinophils are important in the early phase of IAV infection providing immediate protection to the epithelial barrier until adaptive immune responses are deployed during influenza.


Sign in / Sign up

Export Citation Format

Share Document