scholarly journals The BvgAS Regulon ofBordetella pertussis

mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Kyung Moon ◽  
Richard P. Bonocora ◽  
David D. Kim ◽  
Qing Chen ◽  
Joseph T. Wade ◽  
...  

ABSTRACTNearly all virulence factors inBordetella pertussisare activated by a master two-component system, BvgAS, composed of the sensor kinase BvgS and the response regulator BvgA. When BvgS is active, BvgA is phosphorylated (BvgA~P), and virulence-activated genes (vags) are expressed [Bvg(+) mode]. When BvgS is inactive and BvgA is not phosphorylated, virulence-repressed genes (vrgs) are induced [Bvg(−) mode]. Here, we have used transcriptome sequencing (RNA-seq) and reverse transcription-quantitative PCR (RT-qPCR) to define the BvgAS-dependent regulon ofB. pertussisTohama I. Our analyses reveal more than 550 BvgA-regulated genes, of which 353 are newly identified. BvgA-activated genes include those encoding two-component systems (such askdpED), multiple other transcriptional regulators, and the extracytoplasmic function (ECF) sigma factorbrpL, which is needed for type 3 secretion system (T3SS) expression, further establishing the importance of BvgA~P as an apex regulator of transcriptional networks promoting virulence. Usingin vitrotranscription, we demonstrate that the promoter forbrpLis directly activated by BvgA~P. BvgA-FeBABE cleavage reactions identify BvgA~P binding sites centered at positions −41.5 and −63.5 inbprL. Most importantly, we show for the first time that genes for multiple and varied metabolic pathways are significantly upregulated in theB. pertussisBvg(−) mode. These include genes for fatty acid and lipid metabolism, sugar and amino acid transporters, pyruvate dehydrogenase, phenylacetic acid degradation, and the glycolate/glyoxylate utilization pathway. Our results suggest that metabolic changes in the Bvg(−) mode may be participating in bacterial survival, transmission, and/or persistence and identify over 200 newvrgs that can be tested for function.IMPORTANCEWithin the past 20 years, outbreaks of whooping cough, caused byBordetella pertussis, have led to respiratory disease and infant mortalities, despite good vaccination coverage. This is due, at least in part, to the introduction of a less effective acellular vaccine in the 1990s. It is crucial, then, to understand the molecular basis ofB. pertussisgrowth and infection. The two-component system BvgA (response regulator)/BvgS (histidine kinase) is the master regulator ofB. pertussisvirulence genes. We report here the first RNA-seq analysis of the BvgAS regulon inB. pertussis, revealing that more than 550 genes are regulated by BvgAS. We show that genes for multiple and varied metabolic pathways are highly regulated in the Bvg(−) mode (absence of BvgA phosphorylation). Our results suggest that metabolic changes in the Bvg(−) mode may be participating in bacterial survival, transmission, and/or persistence.

2007 ◽  
Vol 189 (20) ◽  
pp. 7335-7342 ◽  
Author(s):  
María L. Cabeza ◽  
Andrés Aguirre ◽  
Fernando C. Soncini ◽  
Eleonora García Véscovi

ABSTRACT Bacterial survival in diverse and changing environments relies on the accurate interplay between different regulatory pathways, which determine the design of an adequate adaptive response. The proper outcome depends on a precise gene expression profile generated from the finely tuned and concerted action of transcriptional factors of distinct regulatory hierarchies. Salmonella enterica serovar Typhimurium harbors multiple regulatory systems that are crucial for the bacterium to cope with harsh extra- and intracellular environments. In this work, we found that the expression of Salmonella RstA, a response regulator from the two-component system family, was able to downregulate the expression of three RpoS-controlled genes (narZ, spvA, and bapA). Furthermore, this downregulation was achieved by a reduction in RpoS cellular levels. The alternative sigma factor RpoS is critical for bacterial endurance under the most-stressful conditions, including stationary-phase entrance and host adaptation. Accordingly, RpoS cellular levels are tightly controlled by complex transcriptional, translational, and posttranslational mechanisms. The analysis of each regulatory step revealed that in Salmonella, RstA expression was able to promote RpoS degradation independently of the MviA-ClpXP proteolytic pathway. Additionally, we show that RstA is involved in modulating Salmonella biofilm formation. The fact that the RpoS-modulated genes affected by RstA expression have previously been demonstrated to contribute to Salmonella pathogenic traits, which include biofilm-forming capacity, suggests that under yet unknown conditions, RstA may function as a control point of RpoS-dependent pathways that govern Salmonella virulence.


2014 ◽  
Vol 197 (5) ◽  
pp. 861-871 ◽  
Author(s):  
Kumiko Kurabayashi ◽  
Yuko Hirakawa ◽  
Koichi Tanimoto ◽  
Haruyoshi Tomita ◽  
Hidetada Hirakawa

Particular interest in fosfomycin has resurfaced because it is a highly beneficial antibiotic for the treatment of refractory infectious diseases caused by pathogens that are resistant to other commonly used antibiotics. The biological cost to cells of resistance to fosfomycin because of chromosomal mutation is high. We previously found that a bacterial two-component system, CpxAR, induces fosfomycin tolerance in enterohemorrhagicEscherichia coli(EHEC) O157:H7. This mechanism does not rely on irreversible genetic modification and allows EHEC to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin. Here we show that another two-component system, TorSRT, which was originally characterized as a regulatory system for anaerobic respiration utilizing trimethylamine-N-oxide (TMAO), also induces fosfomycin tolerance. Activation of the Tor regulatory pathway by overexpression oftorR, which encodes the response regulator, or addition of TMAO increased fosfomycin tolerance in EHEC. We also show that phosphorylated TorR directly represses the expression ofglpT, a gene that encodes a symporter of fosfomycin and glycerol-3-phosphate, and activation of the TorR protein results in the reduced uptake of fosfomycin by cells. However, cells in which the Tor pathway was activated had an impaired growth phenotype when cultured with glycerol-3-phosphate as a carbon substrate. These observations suggest that the TorSRT pathway is the second two-component system to reversibly control fosfomycin tolerance and glycerol-3-phosphate uptake in EHEC, and this may be beneficial for bacteria by alleviating the biological cost. We expect that this mechanism could be a potential target to enhance the utility of fosfomycin as chemotherapy against multidrug-resistant pathogens.


2020 ◽  
Author(s):  
Lorena Novoa-Aponte ◽  
Fernando C. Soncini ◽  
José M. Argüello

ABSTRACTTwo component systems control periplasmic Cu+ homeostasis in Gram-negative bacteria. In characterized systems such as Escherichia coli CusRS, upon Cu+ binding to the periplasmic sensing domain of CusS, a cytoplasmic phosphotransfer domain phosphorylates the response regulator CusR. This drives the expression of efflux transporters, chaperones, and redox enzymes to ameliorate metal toxic effects. Here, we show that the Pseudomonas aeruginosa two component sensor histidine kinase CopS exhibits a Cu-dependent phosphatase activity that maintains a non-phosphorylated CopR when the periplasmic Cu levels are below its activation threshold. Upon Cu+ binding to the sensor, the phosphatase activity is blocked and the phosphorylated CopR activates transcription of the CopRS regulon. Supporting the model, mutagenesis experiments revealed that the ΔcopS strain showed constitutive high expression of the CopRS regulon, lower intracellular Cu+ levels, and larger Cu tolerance when compared to wild type cells. The invariant phospho-acceptor residue His235 of CopS was not required for the phosphatase activity itself, but necessary for its Cu-dependency. To sense the metal, the periplasmic domain of CopS binds two Cu+ ions at its dimeric interface. Homology modeling of CopS based on CusS structure (four Ag+ binding sites) clearly explains the different binding stoichiometries in both systems. Interestingly, CopS binds Cu+/2+ with 30 × 10−15 M affinities, pointing to the absence of free (hydrated) Cu+/2+ in the periplasm.IMPORTANCECopper is a micronutrient required as cofactor in redox enzymes. When free, copper is toxic, mismetallating proteins, and generating damaging free radicals. Consequently, copper overload is a strategy that eukaryotic cells use to combat pathogens. Bacteria have developed copper sensing transcription factors to control copper homeostasis. The cell envelope is the first compartment that has to cope with copper stress. Dedicated two component systems control the periplasmic response to metal overload. This manuscript shows that the copper sensing two component system present in Pseudomonadales exhibits a signal-dependent phosphatase activity controlling the activation of the response regulator, distinct from previously described periplasmic Cu sensors. Importantly, the data show that the sensor is activated by copper levels compatible with the absence of free copper in the cell periplasm. This emphasizes the diversity of molecular mechanisms that have evolved in various bacteria to manage the copper cellular distribution.


2016 ◽  
Vol 113 (46) ◽  
pp. 13174-13179 ◽  
Author(s):  
Zaira Martín-Moldes ◽  
Blas Blázquez ◽  
Claudine Baraquet ◽  
Caroline S. Harwood ◽  
María T. Zamarro ◽  
...  

Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger that controls diverse functions in bacteria, including transitions from planktonic to biofilm lifestyles, virulence, motility, and cell cycle. Here we describe TolR, a hybrid two-component system (HTCS), from the β-proteobacterium Azoarcus sp. strain CIB that degrades c-di-GMP in response to aromatic hydrocarbons, including toluene. This response protects cells from toluene toxicity during anaerobic growth. Whereas wild-type cells tolerated a sudden exposure to a toxic concentration of toluene, a tolR mutant strain or a strain overexpressing a diguanylate cyclase gene lost viability upon toluene shock. TolR comprises an N-terminal aromatic hydrocarbon-sensing Per–Arnt–Sim (PAS) domain, followed by an autokinase domain, a response regulator domain, and a C-terminal c-di-GMP phosphodiesterase (PDE) domain. Autophosphorylation of TolR in response to toluene exposure initiated an intramolecular phosphotransfer to the response regulator domain that resulted in c-di-GMP degradation. The TolR protein was engineered as a functional sensor histidine kinase (TolRSK) and an independent response regulator (TolRRR). This classic two-component system (CTCS) operated less efficiently than TolR, suggesting that TolR was evolved as a HTCS to optimize signal transduction. Our results suggest that TolR enables Azoarcus sp. CIB to adapt to toxic aromatic hydrocarbons under anaerobic conditions by modulating cellular levels of c-di-GMP. This is an additional role for c-di-GMP in bacterial physiology.


mSphere ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Matthias Wehrmann ◽  
Charlotte Berthelot ◽  
Patrick Billard ◽  
Janosch Klebensberger

ABSTRACTInPseudomonas putidaKT2440, two pyrroloquinoline quinone-dependent ethanol dehydrogenases (PQQ-EDHs) are responsible for the periplasmic oxidation of a broad variety of volatile organic compounds (VOCs). Depending on the availability of rare earth elements (REEs) of the lanthanide series (Ln3+), we have recently reported that the transcription of the genes encoding the Ca2+-utilizing enzyme PedE and the Ln3+-utilizing enzyme PedH are inversely regulated. With adaptive evolution experiments, site-specific mutations, transcriptional reporter fusions, and complementation approaches, we now demonstrate that the PedS2/PedR2 (PP_2671/PP_2672) two-component system (TCS) plays a central role in the observed REE-mediated switch of PQQ-EDHs inP. putida. We provide evidence that in the absence of lanthanum (La3+), the sensor histidine kinase PedS2 phosphorylates its cognate LuxR-type response regulator PedR2, which in turn not only activatespedEgene transcription but is also involved in repression ofpedH. Our data further suggest that the presence of La3+lowers kinase activity of PedS2, either by the direct binding of the metal ions to the periplasmic region of PedS2 or by an uncharacterized indirect interaction, leading to reduced levels of phosphorylated PedR2. Consequently, the decreasingpedEexpression and concomitant alleviation ofpedHrepression causes—in conjunction with the transcriptional activation of thepedHgene by a yet unknown regulatory module—the Ln3+-dependent transition from PedE- to PedH-catalyzed oxidation of alcoholic VOCs.IMPORTANCEThe function of lanthanides for methanotrophic and methylotrophic bacteria is gaining increasing attention, while knowledge about the role of rare earth elements (REEs) in nonmethylotrophic bacteria is still limited. The present study investigates the recently described differential expression of the two PQQ-EDHs ofP. putidain response to lanthanides. We demonstrate that a specific TCS is crucial for their inverse regulation and provide evidence for a dual regulatory function of the LuxR-type response regulator involved. Thus, our study represents the first detailed characterization of the molecular mechanism underlying the REE switch of PQQ-EDHs in a nonmethylotrophic bacterium and stimulates subsequent investigations for the identification of additional genes or phenotypic traits that might be coregulated during REE-dependent niche adaptation.


2020 ◽  
Vol 202 (7) ◽  
Author(s):  
José Hernández-Valle ◽  
Alejandro Sanchez-Flores ◽  
Sebastian Poggio ◽  
Georges Dreyfus ◽  
Laura Camarena

ABSTRACT Activation of the two-component system formed by CckA, ChpT, and CtrA (kinase, phosphotransferase, and response regulator, respectively) in Rhodobacter sphaeroides does not occur under the growth conditions commonly used in the laboratory. However, it is possible to isolate a gain-of-function mutant in CckA that turns the system on. Using massive parallel transcriptome sequencing (RNA-seq), we identified 321 genes that are differentially regulated by CtrA. From these genes, 239 were positively controlled and 82 were negatively regulated. Genes encoding the Fla2 polar flagella and gas vesicle proteins are strongly activated by CtrA. Genes involved in stress responses as well as several transcriptional factors are also positively controlled, whereas the photosynthetic and CO2 fixation genes are repressed. Potential CtrA-binding sites were bioinformatically identified, leading to the proposal that at least 81 genes comprise the direct regulon. Based on our results, we ponder that the transcriptional response orchestrated by CtrA enables a lifestyle in which R. sphaeroides will effectively populate the surface layer of a water body enabled by gas vesicles and will remain responsive to chemotactic stimuli using the chemosensoring system that controls the Fla2 flagellum. Simultaneously, fine-tuning of photosynthesis and stress responses will reduce the damage caused by heat and high light intensity in this water stratum. In summary, in this bacterium CtrA has evolved to control physiological responses that allow its adaptation to a particular lifestyle instead of controlling the cell cycle as occurs in other species. IMPORTANCE Cell motility in Alphaproteobacteria is frequently controlled by the CckA, ChpT, and CtrA two-component system. Under the growth conditions commonly used in the laboratory, ctrA is transcriptionally inactive in Rhodobacter sphaeroides, and motility depends on the Fla1 flagellar system that was acquired by a horizontal transfer event. Likely, the incorporation of this flagellar system released CtrA from the strong selective pressure of being the main motility regulator, allowing this two-component system to specialize and respond to some specific conditions. Identifying the genes that are directly regulated by CtrA could help us understand the conditions in which the products of this regulon are required. Massive parallel transcriptome sequencing (RNA-seq) revealed that CtrA orchestrates an adaptive response that contributes to the colonization of a particular environmental niche.


Microbiology ◽  
2005 ◽  
Vol 151 (11) ◽  
pp. 3603-3614 ◽  
Author(s):  
Darío Ortiz de Orué Lucana ◽  
Peijian Zou ◽  
Marc Nierhaus ◽  
Hildgund Schrempf

The Gram-positive soil bacterium and cellulose degrader Streptomyces reticuli synthesizes the mycelium-associated enzyme CpeB, which displays haem-dependent catalase and peroxidase activity, as well as haem-independent manganese-peroxidase activity. The expression of the furS–cpeB operon depends on the redox regulator FurS and the presence of the haem-binding protein HbpS. Upstream of hbpS, the neighbouring senS and senR genes were identified. SenS is a sensor histidine kinase with five predicted N-terminally located transmembrane domains. SenR is the corresponding response regulator with a C-terminal DNA-binding motif. Comparative transcriptional and biochemical studies with a designed S. reticuli senS/senR chromosomal disruption mutant and a set of constructed Streptomyces lividans transformants showed that the presence of the novel two-component system SenS/SenR negatively modulates the expression of the furS–cpeB operon and the hbpS gene. The presence of SenS/SenR enhances considerably the resistance of S. reticuli to haemin and the redox-cycling compound plumbagin, suggesting that this system could participate directly or indirectly in the sensing of redox changes. Epitope-tagged HbpS (obtained from an Escherichia coli transformant) as well as the native S. reticuli HbpS interact in vitro specifically with the purified SenS fusion protein. On the basis of these findings, together with data deduced from the S. reticuli hbpS mutant strain, HbpS is suggested to act as an accessory protein that communicates with the sensor protein to modulate the corresponding regulatory cascade. Interestingly, close and distant homologues, respectively, of the SenS/SenR system are encoded within the Streptomyces coelicolor A3(2) and Streptomyces avermitilis genomes, but not within other known bacterial genomes. Hence the SenS/SenR system appears to be confined to streptomycetes.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Rong Gao ◽  
Ann M. Stock

ABSTRACT Cells rely on accurate control of signaling systems to adapt to environmental perturbations. System deactivation upon stimulus removal is as important as activation of signaling pathways. The two-component system (TCS) is one of the major bacterial signaling schemes. In many TCSs, phosphatase activity of the histidine kinase (HK) is believed to play an essential role in shutting off the pathway and resetting the system to the prestimulus state. Two basic challenges are to understand the dynamic behavior of system deactivation and to quantitatively evaluate the role of phosphatase activity under natural cellular conditions. Here we report a kinetic analysis of the response to shutting off the archetype Escherichia coli PhoR-PhoB TCS pathway using both transcription reporter assays and in vivo phosphorylation analyses. Upon removal of the stimulus, the pathway is shut off by rapid dephosphorylation of the PhoB response regulator (RR) while PhoB-regulated gene products gradually reset to prestimulus levels through growth dilution. We developed an approach combining experimentation and modeling to assess in vivo kinetic parameters of the phosphatase activity with kinetic data from multiple phosphatase-diminished mutants. This enabled an estimation of the PhoR phosphatase activity in vivo , which is much stronger than the phosphatase activity of PhoR cytoplasmic domains analyzed in vitro . We quantitatively modeled how strong the phosphatase activity needs to be to suppress nonspecific phosphorylation in TCSs and discovered that strong phosphatase activity of PhoR is required for cross-phosphorylation suppression. IMPORTANCE Activation of TCSs has been extensively studied; however, the kinetics of shutting off TCS pathways is not well characterized. We present comprehensive analyses of the shutoff response for the PhoR-PhoB system that reveal the impact of phosphatase activity on shutoff kinetics. This allows development of a quantitative framework not only to characterize the phosphatase activity in the natural cellular environment but also to understand the requirement for specific strengths of phosphatase activity to suppress nonspecific phosphorylation. Our model suggests that the ratio of the phosphatase rate to the nonspecific phosphorylation rate correlates with TCS expression levels and the ratio of the RR to HK, which may contribute to the great diversity of enzyme levels and activities observed in different TCSs.


Sign in / Sign up

Export Citation Format

Share Document