scholarly journals Molecular and Structural Analysis of the Helicobacter pylori cag Type IV Secretion System Core Complex

mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Arwen E. Frick-Cheng ◽  
Tasia M. Pyburn ◽  
Bradley J. Voss ◽  
W. Hayes McDonald ◽  
Melanie D. Ohi ◽  
...  

ABSTRACT Bacterial type IV secretion systems (T4SSs) can function to export or import DNA, and can deliver effector proteins into a wide range of target cells. Relatively little is known about the structural organization of T4SSs that secrete effector proteins. In this report, we describe the isolation and analysis of a membrane-spanning core complex from the Helicobacter pylori cag T4SS, which has an important role in the pathogenesis of gastric cancer. We show that this complex contains five H. pylori proteins, CagM, CagT, Cag3, CagX, and CagY, each of which is required for cag T4SS activity. CagX and CagY are orthologous to the VirB9 and VirB10 components of T4SSs in other bacterial species, and the other three Cag proteins are unique to H. pylori . Negative stain single-particle electron microscopy revealed complexes 41 nm in diameter, characterized by a 19-nm-diameter central ring linked to an outer ring by spoke-like linkers. Incomplete complexes formed by Δ cag3 or Δ cagT mutants retain the 19-nm-diameter ring but lack an organized outer ring. Immunogold labeling studies confirm that Cag3 is a peripheral component of the complex. The cag T4SS core complex has an overall diameter and structural organization that differ considerably from the corresponding features of conjugative T4SSs. These results highlight specialized features of the H. pylori cag T4SS that are optimized for function in the human gastric mucosal environment. IMPORTANCE Type IV secretion systems (T4SSs) are versatile macromolecular machines that are present in many bacterial species. In this study, we investigated a T4SS found in the bacterium Helicobacter pylori. H. pylori is an important cause of stomach cancer, and the H. pylori T4SS contributes to cancer pathogenesis by mediating entry of CagA (an effector protein regarded as a “bacterial oncoprotein”) into gastric epithelial cells. We isolated and analyzed the membrane-spanning core complex of the H. pylori T4SS and showed that it contains unique proteins unrelated to components of T4SSs in other bacterial species. These results constitute the first structural analysis of the core complex from this important secretion system.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Michael J Sheedlo ◽  
Jeong Min Chung ◽  
Neha Sawhney ◽  
Clarissa L Durie ◽  
Timothy L Cover ◽  
...  

The pathogenesis of Helicobacter pylori-associated gastric cancer is dependent on delivery of CagA into host cells through a type IV secretion system (T4SS). The H. pylori Cag T4SS includes a large membrane-spanning core complex containing five proteins, organized into an outer membrane cap (OMC), a periplasmic ring (PR) and a stalk. Here, we report cryo-EM reconstructions of a core complex lacking Cag3 and an improved map of the wild-type complex. We define the structures of two unique species-specific components (Cag3 and CagM) and show that Cag3 is structurally similar to CagT. Unexpectedly, components of the OMC are organized in a 1:1:2:2:5 molar ratio (CagY:CagX:CagT:CagM:Cag3). CagX and CagY are components of both the OMC and the PR and bridge the symmetry mismatch between these regions. These results reveal that assembly of the H. pylori T4SS core complex is dependent on incorporation of interwoven species-specific components.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Jeong Min Chung ◽  
Michael J Sheedlo ◽  
Anne M Campbell ◽  
Neha Sawhney ◽  
Arwen E Frick-Cheng ◽  
...  

Bacterial type IV secretion systems (T4SSs) are molecular machines that can mediate interbacterial DNA transfer through conjugation and delivery of effector molecules into host cells. The Helicobacter pylori Cag T4SS translocates CagA, a bacterial oncoprotein, into gastric cells, contributing to gastric cancer pathogenesis. We report the structure of a membrane-spanning Cag T4SS assembly, which we describe as three sub-assemblies: a 14-fold symmetric outer membrane core complex (OMCC), 17-fold symmetric periplasmic ring complex (PRC), and central stalk. Features that differ markedly from those of prototypical T4SSs include an expanded OMCC and unexpected symmetry mismatch between the OMCC and PRC. This structure is one of the largest bacterial secretion system assemblies ever reported and illustrates the remarkable structural diversity that exists among bacterial T4SSs.


2020 ◽  
Author(s):  
Michael J. Sheedlo ◽  
Jeong Min Chung ◽  
Neha Sawhney ◽  
Clarissa L. Durie ◽  
Timothy L. Cover ◽  
...  

AbstractThe pathogenesis of Helicobacter pylori-associated gastric cancer is dependent on delivery of CagA into host cells through a type IV secretion system (T4SS). The H. pylori Cag T4SS includes a large membrane-spanning core complex containing 5 proteins, organized into an outer membrane cap (OMC), a periplasmic ring (PR) and a stalk. Here, we report cryo-EM reconstructions of a core complex lacking Cag3 and an improved map of the wild-type complex. We define the structures of two unique species-specific components (Cag3 and CagM) and show that Cag3 is structurally similar to CagT. Unexpectedly, components of the OMC are organized in a 1:1:2:2:5 molar ratio (CagY:CagX:CagT:CagM:Cag3). CagX and CagY are components of both the OMC and the PR and bridge the symmetry mismatch between these regions. These results reveal that assembly of the H. pylori T4SS core complex is dependent on incorporation of interwoven species-specific components.


mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Carrie L. Shaffer ◽  
James A. D. Good ◽  
Santosh Kumar ◽  
K. Syam Krishnan ◽  
Jennifer A. Gaddy ◽  
...  

ABSTRACT Bacteria utilize complex type IV secretion systems (T4SSs) to translocate diverse effector proteins or DNA into target cells. Despite the importance of T4SSs in bacterial pathogenesis, the mechanism by which these translocation machineries deliver cargo across the bacterial envelope remains poorly understood, and very few studies have investigated the use of synthetic molecules to disrupt T4SS-mediated transport. Here, we describe two synthetic small molecules (C10 and KSK85) that disrupt T4SS-dependent processes in multiple bacterial pathogens. Helicobacter pylori exploits a pilus appendage associated with the cag T4SS to inject an oncogenic effector protein (CagA) and peptidoglycan into gastric epithelial cells. In H. pylori , KSK85 impedes biogenesis of the pilus appendage associated with the cag T4SS, while C10 disrupts cag T4SS activity without perturbing pilus assembly. In addition to the effects in H. pylori , we demonstrate that these compounds disrupt interbacterial DNA transfer by conjugative T4SSs in Escherichia coli and impede vir T4SS-mediated DNA delivery by Agrobacterium tumefaciens in a plant model of infection. Of note, C10 effectively disarmed dissemination of a derepressed IncF plasmid into a recipient bacterial population, thus demonstrating the potential of these compounds in mitigating the spread of antibiotic resistance determinants driven by conjugation. To our knowledge, this study is the first report of synthetic small molecules that impair delivery of both effector protein and DNA cargos by diverse T4SSs. IMPORTANCE Many human and plant pathogens utilize complex nanomachines called type IV secretion systems (T4SSs) to transport proteins and DNA to target cells. In addition to delivery of harmful effector proteins into target cells, T4SSs can disseminate genetic determinants that confer antibiotic resistance among bacterial populations. In this study, we sought to identify compounds that disrupt T4SS-mediated processes. Using the human gastric pathogen H. pylori as a model system, we identified and characterized two small molecules that prevent transfer of an oncogenic effector protein to host cells. We discovered that these small molecules also prevented the spread of antibiotic resistance plasmids in E. coli populations and diminished the transfer of tumor-inducing DNA from the plant pathogen A. tumefaciens to target cells. Thus, these compounds are versatile molecular tools that can be used to study and disarm these important bacterial machines.


2006 ◽  
Vol 188 (13) ◽  
pp. 4787-4800 ◽  
Author(s):  
Valerie J. Busler ◽  
Victor J. Torres ◽  
Mark S. McClain ◽  
Oscar Tirado ◽  
David B. Friedman ◽  
...  

ABSTRACT Many Helicobacter pylori isolates contain a 40-kb region of chromosomal DNA known as the cag pathogenicity island (PAI). The risk for development of gastric cancer or peptic ulcer disease is higher among humans infected with cag PAI-positive H. pylori strains than among those infected with cag PAI-negative strains. The cag PAI encodes a type IV secretion system that translocates CagA into gastric epithelial cells. To identify Cag proteins that are expressed by H. pylori during growth in vitro, we compared the proteomes of a wild-type H. pylori strain and an isogenic cag PAI deletion mutant using two-dimensional difference gel electrophoresis (2D-DIGE) in multiple pH ranges. Seven Cag proteins were identified by this approach. We then used a yeast two-hybrid system to detect potential protein-protein interactions among 14 Cag proteins. One heterotypic interaction (CagY/7 with CagX/8) and two homotypic interactions (involving H. pylori VirB11/ATPase and Cag5) were similar to interactions previously reported to occur among homologous components of the Agrobacterium tumefaciens type IV secretion system. Other interactions involved Cag proteins that do not have known homologues in other bacterial species. Biochemical analysis confirmed selected interactions involving five of the proteins that were identified by 2D-DIGE. Protein-protein interactions among Cag proteins are likely to have an important role in the assembly of the H. pylori type IV secretion apparatus.


2005 ◽  
Vol 73 (8) ◽  
pp. 4643-4652 ◽  
Author(s):  
Bianca Bauer ◽  
Stefan Moese ◽  
Sina Bartfeld ◽  
Thomas F. Meyer ◽  
Matthias Selbach

ABSTRACT Helicobacter pylori persistently infects the human stomach and can cause gastritis, gastric ulceration, and gastric cancer. The type IV secretion system (TFSS) of virulent H. pylori strains translocates the CagA protein, inducing the dephosphorylation of host cell proteins and leading to changes in the morphology or shape of AGS gastric epithelial cells. Furthermore, the TFSS is involved in the induction of proinflammatory cytokines. While the H. pylori genes required for TFSS function have been investigated systematically, little is known about possible host cell factors involved. We infected 19 different mammalian cell lines individually with H. pylori and analyzed CagA translocation, dephosphorylation of host cell proteins, chemokine secretion (interleukin-8 and macrophage inflammatory protein 2), and changes in cellular phenotypes. Our results demonstrate that not only bacterial but also host cell factors determine the cellular response to infection. The identification of such unknown host cell factors will add to our understanding of host-pathogen interactions and might help in the development of new therapeutic strategies.


2008 ◽  
Vol 190 (6) ◽  
pp. 2161-2171 ◽  
Author(s):  
Stefan Kutter ◽  
Renate Buhrdorf ◽  
Jürgen Haas ◽  
Wulf Schneider-Brachert ◽  
Rainer Haas ◽  
...  

ABSTRACT Type IV secretion systems are possibly the most versatile protein transport systems in gram-negative bacteria, with substrates ranging from small proteins to large nucleoprotein complexes. In many cases, such as the cag pathogenicity island of Helicobacter pylori, genes encoding components of a type IV secretion system have been identified due to their sequence similarities to prototypical systems such as the VirB system of Agrobacterium tumefaciens. The Cag type IV secretion system contains at least 14 essential apparatus components and several substrate translocation and auxiliary factors, but the functions of most components cannot be inferred from their sequences due to the lack of similarities. In this study, we have performed a comprehensive sequence analysis of all essential or auxiliary Cag components, and we have used antisera raised against a subset of components to determine their subcellular localization. The results suggest that the Cag system contains functional analogues to all VirB components except VirB5. Moreover, we have characterized mutual stabilization effects and performed a comprehensive yeast two-hybrid screening for potential protein-protein interactions. Immunoprecipitation studies resulted in identification of a secretion apparatus subassembly at the outer membrane. Combining these data, we provide a first low-resolution model of the Cag type IV secretion apparatus.


mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Erin P. Smith ◽  
Cheryl N. Miller ◽  
Robert Child ◽  
Jennifer A. Cundiff ◽  
Jean Celli

ABSTRACTBrucella abortus, the bacterial agent of the worldwide zoonosis brucellosis, primarily infects host phagocytes, where it undergoes an intracellular cycle within a dedicated membrane-bound vacuole, theBrucella-containing vacuole (BCV). Initially of endosomal origin (eBCV), BCVs are remodeled into replication-permissive organelles (rBCV) derived from the host endoplasmic reticulum, a process that requires modulation of host secretory functions via delivery of effector proteins by theBrucellaVirB type IV secretion system (T4SS). Following replication, rBCVs are converted into autophagic vacuoles (aBCVs) that facilitate bacterial egress and subsequent infections, arguing that the bacterium sequentially manipulates multiple cellular pathways to complete its cycle. The VirB T4SS is essential for rBCV biogenesis, as VirB-deficient mutants are stalled in eBCVs and cannot mediate rBCV biogenesis. This has precluded analysis of whether the VirB apparatus also drives subsequent stages of theBrucellaintracellular cycle. To address this issue, we have generated aB. abortusstrain in which VirB T4SS function is conditionally controlled via anhydrotetracycline (ATc)-dependent complementation of a deletion of thevirB11gene encoding the VirB11 ATPase. We show in murine bone marrow-derived macrophages (BMMs) that early VirB production is essential for optimal rBCV biogenesis and bacterial replication. Transient expression ofvirB11prior to infection was sufficient to mediate normal rBCV biogenesis and bacterial replication but led to T4SS inactivation and decreased aBCV formation and bacterial release, indicating that these postreplication stages are also T4SS dependent. Hence, our findings support the hypothesis of additional, postreplication roles of type IV secretion in theBrucellaintracellular cycle.IMPORTANCEMany intracellular bacterial pathogens encode specialized secretion systems that deliver effector proteins into host cells to mediate the multiple stages of their intracellular cycles. Because these intracellular events occur sequentially, classical genetic approaches cannot address the late roles that these apparatuses play, as secretion-deficient mutants cannot proceed past their initial defect. Here we have designed a functionally controllable VirB type IV secretion system (T4SS) in the bacterial pathogenBrucella abortusto decipher its temporal requirements during the bacterium’s intracellular cycle in macrophages. By controlling production of the VirB11 ATPase, which energizes the T4SS, we show not only that this apparatus is required early to generate theBrucellareplicative organelle but also that it contributes to completion of the bacterium’s cycle and bacterial egress. Our findings expand upon the pathogenic functions of theBrucellaVirB T4SS and illustrate targeting of secretion ATPases as a useful strategy to manipulate the activity of bacterial secretion systems.


Sign in / Sign up

Export Citation Format

Share Document