scholarly journals RNA G-Quadruplex Structures Mediate Gene Regulation in Bacteria

mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaolong Shao ◽  
Weitong Zhang ◽  
Mubarak Ishaq Umar ◽  
Hei Yuen Wong ◽  
Zijing Seng ◽  
...  

ABSTRACT Guanine (G)-rich sequences in RNA can fold into diverse RNA G-quadruplex (rG4) structures to mediate various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4s in prokaryotes are still elusive. We used QUMA-1, an rG4-specific fluorescent probe, to detect rG4 structures in a wide range of bacterial species both in vitro and in live cells and found rG4 to be an abundant RNA secondary structure across those species. Subsequently, to identify bacterial rG4 sites in the transcriptome, the model Escherichia coli strain and a major human pathogen, Pseudomonas aeruginosa, were subjected to recently developed high-throughput rG4 structure sequencing (rG4-seq). In total, 168 and 161 in vitro rG4 sites were found in E. coli and P. aeruginosa, respectively. Genes carrying these rG4 sites were found to be involved in virulence, gene regulation, cell envelope synthesis, and metabolism. More importantly, biophysical assays revealed the formation of a group of rG4 sites in mRNAs (such as hemL and bswR), and they were functionally validated in cells by genetic (point mutation and lux reporter assays) and phenotypic experiments, providing substantial evidence for the formation and function of rG4s in bacteria. Overall, our study uncovers important regulatory functions of rG4s in bacterial pathogenicity and metabolic pathways and strongly suggests that rG4s exist and can be detected in a wide range of bacterial species. IMPORTANCE G-quadruplex in RNA (rG4) mediates various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4 are still elusive in prokaryotes. Here, we found that rG4 is an abundant RNA secondary structure across a wide range of bacterial species. Subsequently, the transcriptome-wide rG4 structure sequencing (rG4-seq) revealed that the model E. coli strain and a major human pathogen, P. aeruginosa, have 168 and 161 in vitro rG4 sites, respectively, involved in virulence, gene regulation, cell envelope, and metabolism. We further verified the regulatory functions of two rG4 sites in bacteria (hemL and bswR). Overall, this finding strongly suggests that rG4s play key regulatory roles in a wide range of bacterial species.

2019 ◽  
Vol 201 (23) ◽  
Author(s):  
Rita M. McCall ◽  
Mary E. Sievers ◽  
Rasem Fattah ◽  
Rodolfo Ghirlando ◽  
Andrei P. Pomerantsev ◽  
...  

ABSTRACT Anthrax toxin activator (AtxA) is the master virulence gene regulator of Bacillus anthracis. It regulates genes on the chromosome as well as the pXO1 and pXO2 plasmids. It is not clear how AtxA regulates these genes, and direct binding of AtxA to its targets has not been shown. It has been previously suggested that AtxA and other proteins in the Mga/AtxA global transcriptional regulators family bind to the curvature of their DNA targets, although this has never been experimentally proven. Using electrophoretic mobility shift assays, we demonstrate that AtxA binds directly to the promoter region of pagA upstream of the RNA polymerase binding site. We also demonstrate that in vitro, CO2 appears to have no role in AtxA binding. However, phosphomimetic and phosphoablative substitutions in the phosphotransferase system (PTS) regulation domains (PRDs) do appear to influence AtxA binding and pagA regulation. In silico, in vitro, and in vivo analyses demonstrate that one of two hypothesized stem-loops located upstream of the RNA polymerase binding site in the pagA promoter region is important for AtxA binding in vitro and pagA regulation in vivo. Our study clarifies the mechanism by which AtxA interacts with one of its targets. IMPORTANCE Anthrax toxin activator (AtxA) regulates the major virulence genes in Bacillus anthracis. The bacterium produces the anthrax toxins, and understanding the mechanism of toxin production may facilitate the development of therapeutics for B. anthracis infection. Since the discovery of AtxA 25 years ago, the mechanism by which it regulates its targets has largely remained a mystery. Here, we provide evidence that AtxA binds to the promoter region of the pagA gene encoding the main central protective antigen (PA) component of the anthrax toxin. These data suggest that AtxA binding plays a direct role in gene regulation. Our work also assists in clarifying the role of CO2 in AtxA’s gene regulation and provides more evidence for the role of AtxA phosphorylation in virulence gene regulation.


2012 ◽  
Vol 80 (9) ◽  
pp. 3247-3255 ◽  
Author(s):  
Claudia M. Müller ◽  
Laura Conejero ◽  
Natasha Spink ◽  
Matthew E. Wand ◽  
Gregory J. Bancroft ◽  
...  

ABSTRACTBurkholderia pseudomalleiis a Gram-negative soil bacterium and the causative agent of melioidosis, a disease of humans and animals. It is also listed as a category B bioterrorism threat agent by the U.S. Centers for Disease Control and Prevention, and there is currently no melioidosis vaccine available. Small modified nucleotides such as the hyperphosphorylated guanosine molecules ppGpp and pppGpp play an important role as signaling molecules in prokaryotes. They mediate a global stress response under starvation conditions and have been implicated in the regulation of virulence and survival factors in many bacterial species. In this study, we created arelA spoTdouble mutant inB. pseudomalleistrain K96243, which lacks (p)ppGpp-synthesizing enzymes, and investigated its phenotypein vitroandin vivo. TheB. pseudomalleiΔrelAΔspoTmutant displayed a defect in stationary-phase survival and intracellular replication in murine macrophages. Moreover, the mutant was attenuated in theGalleria mellonellainsect model and in both acute and chronic mouse models of melioidosis. Vaccination of mice with the ΔrelAΔspoTmutant resulted in partial protection against infection with wild-typeB. pseudomallei. In summary, (p)ppGpp signaling appears to represent an essential component of the regulatory network governing virulence gene expression and stress adaptation inB. pseudomallei, and the ΔrelAΔspoTmutant may be a promising live-attenuated vaccine candidate.


2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Zhenhe Su ◽  
Sen Han ◽  
Zheng Qing Fu ◽  
Guoliang Qian ◽  
Fengquan Liu

ABSTRACTLysobacter enzymogenesis a Gram-negative, environmentally ubiquitous bacterium that produces a secondary metabolite, called heat-stable antifungal factor (HSAF), as an antifungal factor against plant and animal fungal pathogens. 4-Hydroxybenzoic acid (4-HBA) is a newly identified diffusible factor that regulates HSAF synthesis viaL. enzymogenesLysR (LysRLe), an LysR-type transcription factor (TF). Here, to identify additional TFs within the 4-HBA regulatory pathway that control HSAF production, we reanalyzed the LenB2-based transcriptomic data, in which LenB2 is the enzyme responsible for 4-HBA production. This survey led to identification of three TFs (Le4806, Le4969, and Le3904). Of them, LarR (Le4806), a member of the MarR family proteins, was identified as a new TF that participated in the 4-HBA-dependent regulation of HSAF production. Our data show the following: (i) that LarR is a downstream component of the 4-HBA regulatory pathway controlling the HSAF level, while LysRLeis the receptor of 4-HBA; (ii) that 4-HBA and LysRLehave opposite regulatory effects onlarRtranscription wherebylarRtranscript is negatively modulated by 4-HBA while LysRLe, in contrast, exerts positive transcriptional regulation by directly binding to thelarRpromoter without being affected by 4-HBAin vitro; (iii) that LarR, similar to LysRLe, can bind to the promoter of the HSAF biosynthetic gene operon, leading to positive regulation of HSAF production; and (iv) that LarR and LysRLecannot interact and instead control HSAF biosynthesis independently. These results outline a previously uncharacterized mechanism by which biosynthesis of the antibiotic HSAF inL. enzymogenesis modulated by the interplay of 4-HBA, a diffusible molecule, and two different TFs.IMPORTANCEBacteria use diverse chemical signaling molecules to regulate a wide range of physiological and cellular processes. 4-HBA is an “old” chemical molecule that is produced by diverse bacterial species, but its regulatory function and working mechanism remain largely unknown. We previously found that 4-HBA inL. enzymogenescould serve as a diffusible factor regulating HSAF synthesis via LysRLe. Here, we further identified LarR, an MarR family protein, as a second TF that participates in the 4-HBA-dependent regulation of HSAF biosynthesis. Our results dissected how LarR acts as a protein linker to connect 4-HBA and HSAF synthesis, whereby LarR also has cross talk with LysRLe. Thus, our findings not only provide fundamental insight regarding how a diffusible molecule (4-HBA) adopts two different types of TFs for coordinating HSAF biosynthesis but also show the use of applied microbiology to increase the yield of the antibiotic HSAF by modification of the 4-HBA regulatory pathway inL. enzymogenes.


2014 ◽  
Vol 81 (1) ◽  
pp. 130-138 ◽  
Author(s):  
James Kirby ◽  
Minobu Nishimoto ◽  
Ruthie W. N. Chow ◽  
Edward E. K. Baidoo ◽  
George Wang ◽  
...  

ABSTRACTTerpene synthesis in the majority of bacterial species, together with plant plastids, takes place via the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway. The first step of this pathway involves the condensation of pyruvate and glyceraldehyde 3-phosphate by DXP synthase (Dxs), with one-sixth of the carbon lost as CO2. A hypothetical novel route from a pentose phosphate to DXP (nDXP) could enable a more direct pathway from C5sugars to terpenes and also circumvent regulatory mechanisms that control Dxs, but there is no enzyme known that can convert a sugar into its 1-deoxy equivalent. Employing a selection for complementation of adxsdeletion inEscherichia coligrown on xylose as the sole carbon source, we uncovered two candidate nDXP genes. Complementation was achieved either via overexpression of the wild-typeE. coliyajOgene, annotated as a putative xylose reductase, or via various mutations in the nativeribBgene.In vitroanalysis performed with purified YajO and mutant RibB proteins revealed that DXP was synthesized in both cases from ribulose 5-phosphate (Ru5P). We demonstrate the utility of these genes for microbial terpene biosynthesis by engineering the DXP pathway inE. colifor production of the sesquiterpene bisabolene, a candidate biodiesel. To further improve flux into the pathway from Ru5P, nDXP enzymes were expressed as fusions to DXP reductase (Dxr), the second enzyme in the DXP pathway. Expression of a Dxr-RibB(G108S) fusion improved bisabolene titers more than 4-fold and alleviated accumulation of intracellular DXP.


1982 ◽  
Vol 57 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Kamal S. Paul ◽  
Eric T. Whalley ◽  
Christine Forster ◽  
Richard Lye ◽  
John Dutton

✓ The authors have studied the ability of prostacyclin to reverse contractions of human basilar arteries in vitro that were induced by a wide range of substances implicated in the etiology of cerebral arterial spasm. Prostacyclin (10−10 to 10−6M) caused a dose-related reversal of contractions induced by 5-hydroxytryptamine, noradrenaline, angiotensin II, prostaglandin (PG)F2α, and U-46619 (a thromboxane-A2 mimetic). These agents were tested at concentrations or volumes that produced almost maximum or maximum responses and those that produced approximately 50% of the maximum response. Contractions induced by maximum concentrations of angiotensin II and U-46619 were least affected by prostacyclin. In addition, contractions induced by thromboxane-A2 generated from guinea-pig lung were reversed in a dose-dependent fashion by prostacyclin. This ability of prostacyclin to physiologically antagonize contractions of the human basilar artery in vitro induced by high concentrations of various spasmogenic agents suggests that such a potent vasodilator agent or more stable analogue may be of value in the treatment of such disorders as cerebral arterial spasm following subarachnoid hemorrhage.


2014 ◽  
Vol 197 (2) ◽  
pp. 354-361 ◽  
Author(s):  
Kerry A. Sokol ◽  
Neil E. Olszewski

The posttranslational addition of a single O-linked β-N-acetylglucosamine (O-GlcNAc) to serine or threonine residues regulates numerous metazoan cellular processes. The enzyme responsible for this modification,O-GlcNAc transferase (OGT), is conserved among a wide variety of organisms and is critical for the viability of many eukaryotes. Although OGTs with domain structures similar to those of eukaryotic OGTs are predicted for many bacterial species, the cellular roles of these OGTs are unknown. We have identified a putative OGT in the cyanobacteriumSynechococcus elongatusPCC 7942 that shows active-site homology and similar domain structure to eukaryotic OGTs. An OGT deletion mutant was created and found to exhibit several phenotypes. Without agitation, mutant cells aggregate and settle out of the medium. The mutant cells have higher free inorganic phosphate levels, wider thylakoid lumen, and differential accumulation of electron-dense inclusion bodies. These phenotypes are rescued by reintroduction of the wild-type OGT but are not fully rescued by OGTs with single amino acid substitutions corresponding to mutations that reduce eukaryotic OGT activity.S. elongatusOGT purified fromEscherichia colihydrolyzed the sugar donor, UDP-GlcNAc, while the mutant OGTs that did not fully rescue the deletion mutant phenotypes had reduced or no activity. These results suggest that bacterial eukaryote-like OGTs, like their eukaryotic counterparts, influence multiple processes.


2015 ◽  
Vol 59 (4) ◽  
pp. 2113-2121 ◽  
Author(s):  
U. Malik ◽  
O. N. Silva ◽  
I. C. M. Fensterseifer ◽  
L. Y. Chan ◽  
R. J. Clark ◽  
...  

ABSTRACTStaphylococcus aureusis a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weakin vitroinhibitory activities againstS. aureus, but several had strong antibacterial activities againstS. aureusin anin vivomurine wound infection model. pYR, an immunomodulatory peptide fromRana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg−1. Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen.


2018 ◽  
Vol 85 (3) ◽  
Author(s):  
Nikola Palevich ◽  
William J. Kelly ◽  
Siva Ganesh ◽  
Jasna Rakonjac ◽  
Graeme T. Attwood

ABSTRACTRumen bacterial species belonging to the genusButyrivibrioare important degraders of plant polysaccharides, particularly hemicelluloses (arabinoxylans) and pectin. Currently, four species are recognized; they have very similar substrate utilization profiles, but little is known about how these microorganisms are able to coexist in the rumen. To investigate this question,Butyrivibrio hungateiMB2003 andButyrivibrio proteoclasticusB316Twere grown alone or in coculture on xylan or pectin, and their growth, release of sugars, fermentation end products, and transcriptomes were examined. In monocultures, B316Twas able to grow well on xylan and pectin, while MB2003 was unable to utilize either of these insoluble substrates to support significant growth. Cocultures of B316Tgrown with MB2003 revealed that MB2003 showed growth almost equivalent to that of B316Twhen either xylan or pectin was supplied as the substrate. The effect of coculture on the transcriptomes of B316Tand MB2003 was assessed; B316Ttranscription was largely unaffected by the presence of MB2003, but MB2003 expressed a wide range of genes encoding proteins for carbohydrate degradation, central metabolism, oligosaccharide transport, and substrate assimilation, in order to compete with B316Tfor the released sugars. These results suggest that B316Thas a role as an initiator of primary solubilization of xylan and pectin, while MB2003 competes effectively for the released soluble sugars to enable its growth and maintenance in the rumen.IMPORTANCEFeeding a future global population of 9 billion people and climate change are the primary challenges facing agriculture today. Ruminant livestock are important food-producing animals, and maximizing their productivity requires an understanding of their digestive systems and the roles played by rumen microbes in plant polysaccharide degradation.Butyrivibriospecies are a phylogenetically diverse group of bacteria and are commonly found in the rumen, where they are a substantial source of polysaccharide-degrading enzymes for the depolymerization of lignocellulosic material. Our findings suggest that closely related species ofButyrivibriohave developed unique strategies for the degradation of plant fiber and the subsequent assimilation of carbohydrates in order to coexist in the competitive rumen environment. The identification of genes expressed during these competitive interactions gives further insight into the enzymatic machinery used by these bacteria as they degrade the xylan and pectin components of plant fiber.


2014 ◽  
Vol 83 (3) ◽  
pp. 1019-1029 ◽  
Author(s):  
Julienne C. Kaiser ◽  
Sameha Omer ◽  
Jessica R. Sheldon ◽  
Ian Welch ◽  
David E. Heinrichs

The branched-chain amino acids (BCAAs; Ile, Leu, and Val) not only are important nutrients for the growth ofStaphylococcus aureusbut also are corepressors for CodY, which regulates virulence gene expression, implicating BCAAs as an important link between the metabolic state of the cell and virulence. BCAAs are either synthesized intracellularly or acquired from the environment.S. aureusencodes three putative BCAA transporters, designated BrnQ1, BrnQ2, and BrnQ3; their functions have not yet been formally tested. In this study, we mutated all threebrnQparalogs so as to characterize their substrate specificities and their roles in growthin vitroandin vivo. We demonstrated that in the community-associated, methicillin-resistantS. aureus(CA-MRSA) strain USA300, BrnQ1 is involved in uptake of all three BCAAs, BrnQ2 transports Ile, and BrnQ3 does not have a significant role in BCAA transport under the conditions tested. Of the three, only BrnQ1 is essential for USA300 to grow in a chemically defined medium that is limited for Leu or Val. Interestingly, we observed that abrnQ2mutant grew better than USA300 in media limited for Leu and Val, owing to the fact that this mutation leads to overexpression ofbrnQ1. In a murine infection model, thebrnQ1mutant was attenuated, but in contrast,brnQ2mutants had significantly increased virulence compared to that of USA300, a phenotype we suggest is at least partially linked to enhancedin vivoscavenging of Leu and Val through BrnQ1. These data uncover a hitherto-undiscovered connection between nutrient acquisition and virulence in CA-MRSA.


mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Dharanesh Gangaiah ◽  
Maria Labandeira-Rey ◽  
Xinjun Zhang ◽  
Kate R. Fortney ◽  
Sheila Ellinger ◽  
...  

ABSTRACTTo adapt to stresses encountered in stationary phase, Gram-negative bacteria utilize the alternative sigma factor RpoS. However, some species lack RpoS; thus, it is unclear how stationary-phase adaptation is regulated in these organisms. Here we defined the growth-phase-dependent transcriptomes ofHaemophilus ducreyi, which lacks an RpoS homolog. Compared to mid-log-phase organisms, cells harvested from the stationary phase upregulated genes encoding several virulence determinants and a homolog ofhfq. Insertional inactivation ofhfqaltered the expression of ~16% of theH. ducreyigenes. Importantly, there were a significant overlap and an inverse correlation in the transcript levels of genes differentially expressed in thehfqinactivation mutant relative to its parent and the genes differentially expressed in stationary phase relative to mid-log phase in the parent. Inactivation ofhfqdownregulated genes in theflp-tadandlspB-lspA2operons, which encode several virulence determinants. To comply with FDA guidelines for human inoculation experiments, an unmarkedhfqdeletion mutant was constructed and was fully attenuated for virulence in humans. Inactivation or deletion ofhfqdownregulated Flp1 and impaired the ability ofH. ducreyito form microcolonies, downregulated DsrA and renderedH. ducreyiserum susceptible, and downregulated LspB and LspA2, which allowH. ducreyito resist phagocytosis. We propose that, in the absence of an RpoS homolog, Hfq serves as a major contributor ofH. ducreyistationary-phase and virulence gene regulation. The contribution of Hfq to stationary-phase gene regulation may have broad implications for other organisms that lack an RpoS homolog.IMPORTANCEPathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma factor RpoS to adapt to stresses and stationary phase. However, homologs of RpoS are absent in some bacterial pathogens, includingHaemophilus ducreyi, which causes chancroid and facilitates the acquisition and transmission of HIV-1. Here, we provide evidence that, in the absence of an RpoS homolog, Hfq serves as a major contributor of stationary-phase gene regulation and that Hfq is required forH. ducreyito infect humans. To our knowledge, this is the first study describing Hfq as a major contributor of stationary-phase gene regulation in bacteria and the requirement of Hfq for the virulence of a bacterial pathogen in humans.


Sign in / Sign up

Export Citation Format

Share Document