scholarly journals Cpx Two-Component Signal Transduction inEscherichia coli: Excessive CpxR-P Levels Underlie CpxA* Phenotypes

2000 ◽  
Vol 182 (5) ◽  
pp. 1423-1426 ◽  
Author(s):  
Peter De Wulf ◽  
E. C. C. Lin

ABSTRACT In Escherichia coli, the CpxA-CpxR two-component signal transduction system and the ςE and ς32response pathways jointly regulate gene expression in adaptation to adverse conditions. These include envelope protein distress, heat shock, oxidative stress, high pH, and entry into stationary phase. Certain mutant versions of the CpxA sensor protein (CpxA* proteins) exhibit an elevated ratio of kinase to phosphatase activity on CpxR, the cognate response regulator. As a result, CpxA* strains display numerous phenotypes, many of which cannot be easily related to currently known functions of the CpxA-CpxR pathway. It is unclear whether CpxA* phenotypes are caused solely by hyperphosphorylation of CpxR. We here report that all of the tested CpxA* phenotypes depend on elevated levels of CpxR-P and not on cross-signalling of CpxA* to noncognate response regulators.

1997 ◽  
Vol 110 (10) ◽  
pp. 1141-1145 ◽  
Author(s):  
W.F. Loomis ◽  
G. Shaulsky ◽  
N. Wang

Autophosphorylating histidine kinases are an ancient conserved family of enzymes that are found in eubacteria, archaebacteria and eukaryotes. They are activated by a wide range of extracellular signals and transfer phosphate moieties to aspartates found in response regulators. Recent studies have shown that such two-component signal transduction pathways mediate osmoregulation in Saccharomyces cerevisiae, Dictyostelium discoideum and Neurospora crassa. Moreover, they play pivotal roles in responses of Arabidopsis thaliana to ethylene and cytokinin. A transmembrane histidine kinase encoded by dhkA accumulates when Dictyostelium cells aggregate during development. Activation of DhkA results in the inhibition of its response regulator, RegA, which is a cAMP phosphodiesterase that regulates the cAMP dependent protein kinase PKA. When PKA is activated late in the differentiation of prespore cells, they encapsulate into spores. There is evidence that this two-component system participates in a feedback loop linked to PKA in prestalk cells such that the signal to initiate encapsulation is rapidly amplified. Such signal transduction pathways can be expected to be found in a variety of eukaryotic differentiations since they are rapidly reversible and can integrate disparate signals.


2005 ◽  
Vol 1725 (3) ◽  
pp. 257-268 ◽  
Author(s):  
Efthimia E. Lioliou ◽  
Eleni P. Mimitou ◽  
Asterios I. Grigoroudis ◽  
Cynthia H. Panagiotidis ◽  
Christos A. Panagiotidis ◽  
...  

2007 ◽  
Vol 189 (19) ◽  
pp. 7007-7013 ◽  
Author(s):  
Travis J. Muff ◽  
Richard M. Foster ◽  
Peter J. Y. Liu ◽  
George W. Ordal

ABSTRACT Bacterial chemotaxis involves the regulation of motility by a modified two-component signal transduction system. In Escherichia coli, CheZ is the phosphatase of the response regulator CheY but many other bacteria, including Bacillus subtilis, use members of the CheC-FliY-CheX family for this purpose. While Bacillus subtilis has only CheC and FliY, many systems also have CheX. The effect of this three-phosphatase system on chemotaxis has not been studied previously. CheX was shown to be a stronger CheY-P phosphatase than either CheC or FliY. In Bacillus subtilis, a cheC mutant strain was nearly complemented by heterologous cheX expression. CheX was shown to overcome the ΔcheC adaptational defect but also generally lowered the counterclockwise flagellar rotational bias. The effect on rotational bias suggests that CheX reduced the overall levels of CheY-P in the cell and did not truly replicate the adaptational effects of CheC. Thus, CheX is not functionally redundant to CheC and, as outlined in the discussion, may be more analogous to CheZ.


2004 ◽  
Vol 186 (23) ◽  
pp. 7951-7958 ◽  
Author(s):  
Lynn E. Hancock ◽  
Marta Perego

ABSTRACT The ability of enterococci to adapt and respond to different environmental stimuli, including the host environment, led us to investigate the role of two-component signal transduction in the regulation of Enterococcus faecalis physiology. Using a bioinformatic approach, we previously identified 17 two-component systems (TCS), consisting of a sensory histidine kinase and the cognate response regulator, as well as an additional orphan response regulator (L. E. Hancock and M. Perego, J. Bacteriol. 184:5819-5825, 2002). In an effort to identify the potential function of each TCS in the biology of E. faecalis clinical isolate strain V583, we constructed insertion mutations in each of the response regulators. We were able to inactivate 17 of 18 response regulators, the exception being an ortholog of YycF, previously shown to be essential for viability in a variety of gram-positive microorganisms. The biological effects of the remaining mutations were assessed by using a number of assays, including antibiotic resistance, biofilm formation, and environmental stress. We identified TCS related to antibiotic resistance and environmental stress and found one system which controls the initiation of biofilm development by E. faecalis.


2015 ◽  
Vol 59 (7) ◽  
pp. 3789-3799 ◽  
Author(s):  
Julia J. van Rensburg ◽  
Kate R. Fortney ◽  
Lan Chen ◽  
Andrew J. Krieger ◽  
Bruno P. Lima ◽  
...  

ABSTRACTCpxRA is a two-component signal transduction system (2CSTS) found in many drug-resistant Gram-negative bacteria. In response to periplasmic stress, CpxA autophosphorylates and donates a phosphoryl group to its cognate response regulator, CpxR. Phosphorylated CpxR (CpxR-P) upregulates genes involved in membrane repair and downregulates multiple genes that encode virulence factors, which are trafficked across the cell membrane. Mutants that constitutively activate CpxRA inSalmonella entericaserovar Typhimurium andHaemophilus ducreyiare avirulent in mice and humans, respectively. Thus, the activation of CpxRA has high potential as a novel antimicrobial/antivirulence strategy. Using a series ofEscherichia colistrains containing a CpxR-P-responsivelacZreporter and deletions in genes encoding CpxRA system components, we developed and validated a novel cell-based high-throughput screen (HTS) for CpxRA activators. A screen of 36,000 compounds yielded one hit compound that increased reporter activity in wild-type cells. This is the first report of a compound that activates, rather than inhibits, a 2CSTS. The activity profile of the compound against CpxRA pathway mutants in the presence of glucose suggested that the compound inhibits CpxA phosphatase activity. We confirmed that the compound induced the accumulation of CpxR-P in treated cells. Although the hit compound contained a nitro group, a derivative lacking this group retained activity in serum and had lower cytotoxicity than that of the initial hit. This HTS is amenable for the screening of larger libraries to find compounds that activate CpxRA by other mechanisms, and it could be adapted to find activators of other two-component systems.


1998 ◽  
Vol 180 (23) ◽  
pp. 6375-6383 ◽  
Author(s):  
Céline Fabret ◽  
James A. Hoch

ABSTRACT A two-component signal transduction system encoded by theyycF and yycG genes is part of an operon containing three genes, yycH, yycI, andyycJ, with no known function and a gene, yycK, coding for an HtrA-like protease. This operon was transcribed during growth, and its transcription shut down as the cells approached stationary phase. This decreased transcription was not Spo0A dependent. The HtrA protease gene was separately controlled during sporulation from a ςG promoter. Studies using insertional inactivation plasmids revealed that neither yycF noryycG could be inactivated, whereas the other genes were inactivated without loss of viability. A temperature-sensitive YycF response regulator mutant was isolated and shown to have an H215P mutation in a putative DNA-binding domain which is closely related to the OmpR family of response regulators. At the nonpermissive temperature, cultures of the mutant strain stopped growth within 30 min, and this was followed by a decrease in optical density. Microscopically, many of the cells appeared to retain their structure while being empty of their contents. The essential processes regulated by this two-component system remain unknown. A search of the genome databases revealed YycF, YycG, and YycJ homologues encoded by three linked genes in Streptococcus pyogenes. The high level of identity of these proteins (71% for YycF) suggests that this system may play a similar role in gram-positive pathogens.


1999 ◽  
Vol 181 (17) ◽  
pp. 5330-5340 ◽  
Author(s):  
Michael P. Schmitt

ABSTRACT Corynebacterium diphtheriae, the causative agent of diphtheria, utilizes various host compounds to acquire iron. TheC. diphtheriae hmuO gene encodes a heme oxygenase that is involved in the utilization of heme and hemoglobin as iron sources. Transcription of the hmuO gene in C. diphtheriae is controlled under a dual regulatory mechanism in which the diphtheria toxin repressor protein (DtxR) and iron repress expression while either heme or hemoglobin is needed to activate transcription. In this study, two clones isolated from a C. diphtheriae chromosomal library were shown to activate transcription from the hmuO promoter in Escherichia coli. Sequence analysis revealed that these activator clones each carried distinct genes whose products had significant homology to response regulators of two-component signal transduction systems. Located upstream from each of these response regulator homologs are partial open reading frames that are predicted to encode the C-terminal portions of sensor kinases. The full-length sensor kinase gene for each of these systems was cloned from the C. diphtheriaechromosome, and constructs each carrying one complete sensor kinase gene and its cognate response regulator were constructed. One of these constructs, pTSB20, which carried the response regulator (chrA) and its cognate sensor kinase (chrS), was shown to strongly activate transcription from the hmuOpromoter in a heme-dependent manner in E. coli. A mutation in chrA (chrAD50N), which changed a conserved aspartic acid residue at position 50, the presumed site of phosphorylation by ChrS, to an asparagine, abolished heme-dependent activation. These findings suggest that the sensor kinase ChrS is involved in the detection of heme and the transduction of this signal, via a phosphotransfer mechanism, to the response regulator ChrA, which then activates transcription of the hmuO promoter. This is the first report of a bacterial two-component signal transduction system that controls gene expression through a heme-responsive mechanism.


2003 ◽  
Vol 47 (11) ◽  
pp. 3421-3429 ◽  
Author(s):  
Birgitte H. Kallipolitis ◽  
Hanne Ingmer ◽  
Cormac G. Gahan ◽  
Colin Hill ◽  
Lotte Søgaard-Andersen

ABSTRACT Listeria monocytogenes is a food-borne pathogen that can cause a variety of illnesses ranging from gastroenteritis to life-threatening septicemia. The β-lactam antibiotic ampicillin remains the drug of choice for the treatment of listeriosis. We have previously identified a response regulator of a putative two-component signal transduction system that plays a role in the virulence and ethanol tolerance of L. monocytogenes. Here we present evidence that the response regulator, CesR, and a histidine protein kinase, CesK, which is encoded by the gene downstream from cesR, are involved in the ability of L. monocytogenes to tolerate ethanol and cell wall-acting antibiotics of the β-lactam family. Furthermore, CesRK controls the expression of a putative extracellular peptide encoded by the orf2420 gene, located immediately downstream from cesRK. Inactivation of orf2420 revealed that it contributes to ethanol tolerance and pathogenesis in mice. Interestingly, we found that transcription of orf2420 was strongly induced by subinhibitory concentrations of various cell wall-acting antibiotics, ethanol, and lysozyme. The induction of orf2420 expression was abolished in the absence of CesRK. Our data suggest that CesRK is involved in regulating aspects of the cell envelope architecture and that changes in cell wall integrity provide a potent stimulus for CesRK-mediated regulation. These results further our understanding of how L. monocytogenes senses and responds to antibiotics that are used therapeutically in the treatment of infectious diseases.


mBio ◽  
2021 ◽  
Author(s):  
Mingshan Li ◽  
Xianjin Xu ◽  
Xiaoqin Zou ◽  
Gerald L. Hazelbauer

Two-component signal transduction systems are a primary means by which bacteria sense and respond to their environment. Response regulators are key components of these systems.


Sign in / Sign up

Export Citation Format

Share Document