scholarly journals Systematic Genetic Interaction Analysis Identifies a Transcription Factor Circuit Required for Oropharyngeal Candidiasis

mBio ◽  
2022 ◽  
Author(s):  
Norma V. Solis ◽  
Rohan S. Wakade ◽  
Virginia E. Glazier ◽  
Tomye L. Ollinger ◽  
Melanie Wellington ◽  
...  

The pathology of oral candidiasis has features of biofilm formation, a well-studied process in vitro . Based on that analogy, we hypothesized that the network of transcription factors that regulates in vitro biofilm formation has similarities and differences during oral infection.

2019 ◽  
Author(s):  
Hidetsugu Kohzaki ◽  
Yota Murakami

AbstractChromatin structure has been implicated in the regulation of DNA replication but the molecular mechanism involved is unclear. In this study, we observed that binding of the transcription factor Abf1 to the replication origin ARS1 facilitated the association of the origin recognition complex (ORC) with ARS1 using genetic interaction analysis and ChIP assay. The histone acetyltransferases (HATs), Gcn5 and Esa1, were also loaded onto ARS1 in an Abf1 site-dependent manner, where they were then responsible for acetylating histone H3 lysine 18 (H3K18) and histone H4 lysine 12 (H4K12), respectively. Interestingly, Abf1 interacted with Gcn5, while ORC interacted with Esa1. Indeed the B3 element showed genetic interaction with Gcn5 and Rpd3 not with Esa1, Act3 and Tra1.These data suggest that Gcn5, which is recruited by Abf1, alters chromatin structure via histone acetylation and facilitates the loading of ORC. We therefore propose that transcription factors regulate chromatin structure at replication origins by recruiting chromatin-modifying proteins, such as HATs, to load the initiator.


2010 ◽  
Vol 192 (18) ◽  
pp. 4541-4552 ◽  
Author(s):  
Xianxian Liu ◽  
Sinem Beyhan ◽  
Bentley Lim ◽  
Roger G. Linington ◽  
Fitnat H. Yildiz

ABSTRACT Vibrio cholerae switches between free-living motile and surface-attached sessile lifestyles. Cyclic diguanylate (c-di-GMP) is a signaling molecule controlling such lifestyle changes. C-di-GMP is synthesized by diguanylate cyclases (DGCs) that contain a GGDEF domain and is degraded by phosphodiesterases (PDEs) that contain an EAL or HD-GYP domain. We constructed in-frame deletions of all V. cholerae genes encoding proteins with GGDEF and/or EAL domains and screened mutants for altered motility phenotypes. Of 52 mutants tested, four mutants exhibited an increase in motility, while three mutants exhibited a decrease in motility. We further characterized one mutant lacking VC0137 (cdgJ), which encodes an EAL domain protein. Cellular c-di-GMP quantifications and in vitro enzymatic activity assays revealed that CdgJ functions as a PDE. The cdgJ mutant had reduced motility and exhibited a small decrease in flaA expression; however, it was able to produce a flagellum. This mutant had enhanced biofilm formation and vps gene expression compared to that of the wild type, indicating that CdgJ inversely regulates motility and biofilm formation. Genetic interaction analysis revealed that at least four DGCs, together with CdgJ, control motility in V. cholerae.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Emi Ito ◽  
Kazuo Ebine ◽  
Seung-won Choi ◽  
Sakura Ichinose ◽  
Tomohiro Uemura ◽  
...  

RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells.


2020 ◽  
Author(s):  
Sierra Rosiana ◽  
Liyang Zhang ◽  
Grace H. Kim ◽  
Alexey V. Revtovich ◽  
Arjun Sukumaran ◽  
...  

AbstractCandida albicans is a microbial fungus that exists as a commensal member of the human microbiome and an opportunistic pathogen. Cell surface-associated adhesin proteins play a crucial role in C. albicans’ ability to undergo cellular morphogenesis, develop robust biofilms, colonize, and cause infection in a host. However, a comprehensive analysis of the role and relationships between these adhesins has not been explored. We previously established a CRISPR-based platform for efficient generation of single- and double-gene deletions in C. albicans, which was used to construct a library of 144 mutants, comprising 12 unique adhesin genes deleted singly, or in every possible combination of double deletions. Here, we exploit this adhesin mutant library to explore the role of adhesin proteins in C. albicans virulence. We perform a comprehensive, high-throughput screen of this library, using Caenorhabditis elegans as a simplified model host system, which identified mutants critical for virulence and significant genetic interactions. We perform follow-up analysis to assess the ability of high- and low-virulence strains to undergo cellular morphogenesis and form biofilms in vitro, as well as to colonize the C. elegans host. We further perform genetic interaction analysis to identify novel significant negative genetic interactions between adhesin mutants, whereby combinatorial perturbation of these genes significantly impairs virulence, more than expected based on virulence of the single mutant constituent strains. Together, this yields important new insight into the role of adhesins, singly and in combinations, in mediating diverse facets of virulence of this critical fungal pathogen.SummaryCandida albicans is a human fungal pathogen and cause of life-threatening systemic infections. Cell surface-associated adhesins play a central role in this pathogen’s ability to establish infection. Here, we provide a comprehensive analysis of adhesin factors, and their role in fungal virulence. Exploiting a high-throughput workflow, we screened an adhesin mutant library using C. elegans as a simple model host, and identified mutants and genetic interactions involved in virulence. We found that adhesin mutants are impaired in in vitro pathogenicity, irrespective of their virulence. Together, this work provides new insight into the role of adhesin factors in mediating fungal virulence.


Toxins ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 532
Author(s):  
Amanda Pissinatti Canelli ◽  
Taís Fernanda dos Santos Rodrigues ◽  
Vivian Fernandes Furletti de Goes ◽  
Guilherme Ferreira Caetano ◽  
Maurício Ventura Mazzi

The growing number of oral infections caused by the Candida species are becoming harder to treat as the commonly used antibiotics become less effective. This drawback has led to the search for alternative strategies of treatment, which include the use of antifungal molecules derived from natural products. Herein, crotoxin (CTX), the main toxin of Crotalus durissus terrificus venom, was challenged against Candida tropicalis (CBS94) and Candida dubliniensis (CBS7987) strains by in vitro antimicrobial susceptibility tests. Minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), and inhibition of biofilm formation were evaluated after CTX treatment. In addition, CTX-induced cytotoxicity in HaCaT cells was assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) colorimetric assay. Native CTX showed a higher antimicrobial activity (MIC = 47 μg/mL) when compared to CTX-containing mouthwash (MIC = 750 μg/mL) and nystatin (MIC = 375 μg/mL). Candida spp biofilm formation was more sensitive to both CTX and CTX-containing mouthwash (IC100 = 12 μg/mL) when compared to nystatin (IC100 > 47 μg/mL). Moreover, significant membrane permeabilization at concentrations of 1.5 and 47 µg/mL was observed. Native CTX was less cytotoxic to HaCaT cells than CTX-containing mouthwash or nystatin between 24 and 48 h. These preliminary findings highlight the potential use of CTX in the treatment of oral candidiasis caused by resistant strains.


BioEssays ◽  
2014 ◽  
Vol 36 (7) ◽  
pp. 706-713 ◽  
Author(s):  
Hannes Braberg ◽  
Erica A. Moehle ◽  
Michael Shales ◽  
Christine Guthrie ◽  
Nevan J. Krogan

2018 ◽  
Vol 20 (2) ◽  
pp. 624-637 ◽  
Author(s):  
Mengyun Wu ◽  
Shuangge Ma

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 818-818
Author(s):  
Rachid Lahlil ◽  
Richard Martin ◽  
Peter D. Aplan ◽  
C. Glenn Begley ◽  
Jacqueline E. Damen ◽  
...  

Abstract Erythroid cell development critically depends on the SCL/Tal1 transcription factor and on erythropoietin signalling. In the present study, we have taken several approaches to show that the two genes operate within the same pathway to consolidate the erythroid lineage. Signaling through the erythropoietin receptor (EpoR) upregulates SCL protein levels in a clonal cell line (TF-1) in vitro, and in murine fetal liver cells in vivo, when Epor−/− cells were compared to those of wild type littermates at E12.5. In addition, we provide functional evidence for a linear pathway from EpoR to SCL that regulates erythropoiesis. Interfering with SCL induction or SCL function prevents the anti-apoptotic effect of Epo in TF-1 cells and conversely, ectopic SCL expression is sufficient to substitute for Epo to transiently maintain cell survival. In vivo, SCL gain of function complements the cellular defects in Epor−/− embryos to support cell survival and maturation during primitive and definitive erythropoiesis, as assessed by cellular and histological analyses of Epor−/− SCLtg embryos. Moreover, several erythroid specific genes that are decreased in Epor−/− embryos are rescued by the SCL transgene including glycophorinA, bH1 and bmaj globin, providing molecular confirmation of the functional and genetic interaction between Epor and SCL. Conversely, erythropoiesis becomes deficient in compound Epor+/−SCL+/− heterozygote mice, indicating that the genetic interaction between EpoR and SCL is synthetic. Finally, using EpoR mutants that harbour well defined signalling deficiencies, combined with gain and loss of function approaches for specific kinases, we identify MAPK as the major signal transduction pathway downstream of EpoR that upregulates SCL function, necessary for erythroid cell survival and differentiation. Taken together, our observations are consistent with the view that cytokines can influence cell fate by altering the dosage of lineage transcriptional regulators.


Sign in / Sign up

Export Citation Format

Share Document