scholarly journals DNA Repair and Transcriptional Deficiencies Caused by Mutations in the Drosophila p52 Subunit of TFIIH Generate Developmental Defects and Chromosome Fragility

2007 ◽  
Vol 27 (10) ◽  
pp. 3640-3650 ◽  
Author(s):  
Mariana Fregoso ◽  
Jean-Philippe Lainé ◽  
Javier Aguilar-Fuentes ◽  
Vincent Mocquet ◽  
Enrique Reynaud ◽  
...  

ABSTRACT The transcription and DNA repair factor TFIIH is composed of 10 subunits. Mutations in the XPB, XPD, and p8 subunits are genetically linked to human diseases, including cancer. However, no reports of mutations in other TFIIH subunits have been reported in higher eukaryotes. Here, we analyze at genetic, molecular, and biochemical levels the Drosophila melanogaster p52 (DMP52) subunit of TFIIH. We found that DMP52 is encoded by the gene marionette in Drosophila and that a defective DMP52 produces UV light-sensitive flies and specific phenotypes during development: organisms are smaller than their wild-type siblings and present tumors and chromosomal instability. The human homologue of DMP52 partially rescues some of these phenotypes. Some of the defects observed in the fly caused by mutations in DMP52 generate trichothiodystrophy and cancer-like phenotypes. Biochemical analysis of DMP52 point mutations introduced in human p52 at positions homologous to those of defects in DMP52 destabilize the interaction between p52 and XPB, another TFIIH subunit, thus compromising the assembly of the complex. This study significantly extends the role of p52 in regulating XPB ATPase activity and, consequently, both its transcriptional and nucleotide excision repair functions.

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Nicolas Le May ◽  
Jean-Marc Egly ◽  
Frédéric Coin

Nucleotide excision repair (NER) is a major DNA repair pathway in eukaryotic cells. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation or bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to three genetic disorders that result in predisposition to cancers, accelerated aging, neurological and developmental defects. During NER, more than 30 polypeptides cooperate to recognize, incise, and excise a damaged oligonucleotide from the genomic DNA. Recent papers reveal an additional and unexpected role for the NER factors. In the absence of a genotoxic attack, the promoters of RNA polymerases I- and II-dependent genes recruit XPA, XPC, XPG, and XPF to initiate gene expression. A model that includes the growth arrest and DNA damage 45αprotein (Gadd45α) and the NER factors, in order to maintain the promoter of active genes under a hypomethylated state, has been proposed but remains controversial. This paper focuses on the double life of the NER factors in DNA repair and transcription and describes the possible roles of these factors in the RNA synthesis process.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1919
Author(s):  
Thong T. Luong ◽  
Kara A. Bernstein

RECQL4 is a member of the evolutionarily conserved RecQ family of 3’ to 5’ DNA helicases. RECQL4 is critical for maintaining genomic stability through its functions in DNA repair, recombination, and replication. Unlike many DNA repair proteins, RECQL4 has unique functions in many of the central DNA repair pathways such as replication, telomere, double-strand break repair, base excision repair, mitochondrial maintenance, nucleotide excision repair, and crosslink repair. Consistent with these diverse roles, mutations in RECQL4 are associated with three distinct genetic diseases, which are characterized by developmental defects and/or cancer predisposition. In this review, we provide an overview of the roles and regulation of RECQL4 during maintenance of genome homeostasis.


2000 ◽  
Vol 182 (8) ◽  
pp. 2104-2112 ◽  
Author(s):  
Asli Memisoglu ◽  
Leona Samson

ABSTRACT DNA damage is unavoidable, and organisms across the evolutionary spectrum possess DNA repair pathways that are critical for cell viability and genomic stability. To understand the role of base excision repair (BER) in protecting eukaryotic cells against alkylating agents, we generated Schizosaccharomyces pombe strains mutant for the mag1 3-methyladenine DNA glycosylase gene. We report that S. pombe mag1 mutants have only a slightly increased sensitivity to methylation damage, suggesting that Mag1-initiated BER plays a surprisingly minor role in alkylation resistance in this organism. We go on to show that other DNA repair pathways play a larger role than BER in alkylation resistance. Mutations in genes involved in nucleotide excision repair (rad13) and recombinational repair (rhp51) are much more alkylation sensitive thanmag1 mutants. In addition, S. pombe mutant for the flap endonuclease rad2 gene, whose precise function in DNA repair is unclear, were also more alkylation sensitive thanmag1 mutants. Further, mag1 andrad13 interact synergistically for alkylation resistance, and mag1 and rhp51 display a surprisingly complex genetic interaction. A model for the role of BER in the generation of alkylation-induced DNA strand breaks in S. pombe is discussed.


2007 ◽  
Vol 54 (3) ◽  
pp. 469-482 ◽  
Author(s):  
Leena Maddukuri ◽  
Dominika Dudzińska ◽  
Barbara Tudek

The eukaryotic cell encounters more than one million various kinds of DNA lesions per day. The nucleotide excision repair (NER) pathway is one of the most important repair mechanisms that removes a wide spectrum of different DNA lesions. NER operates through two sub pathways: global genome repair (GGR) and transcription-coupled repair (TCR). GGR repairs the DNA damage throughout the entire genome and is initiated by the HR23B/XPC complex, while the CSB protein-governed TCR process removes DNA lesions from the actively transcribed strand. The sequence of events and the role of particular NER proteins are currently being extensively discussed. NER proteins also participate in other cellular processes like replication, transcription, chromatin maintenance and protein turnover. Defects in NER underlay severe genetic disorders: xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD).


DNA Repair ◽  
2007 ◽  
Vol 6 (5) ◽  
pp. 578-587 ◽  
Author(s):  
Mette Prætorius-Ibba ◽  
Qi-En Wang ◽  
Gulzar Wani ◽  
Mohamed A. El-Mahdy ◽  
Qianzheng Zhu ◽  
...  

2001 ◽  
Vol 24 (1-4) ◽  
pp. 141-146 ◽  
Author(s):  
W.C. Lima ◽  
R. Medina-Silva ◽  
R.S. Galhardo ◽  
C.F.M. Menck

DNA repair pathways are necessary to maintain the proper genomic stability and ensure the survival of the organism, protecting it against the damaging effects of endogenous and exogenous agents. In this work, we made an analysis of the expression patterns of DNA repair-related genes in sugarcane, by determining the EST (expressed sequence tags) distribution in the different cDNA libraries of the SUCEST transcriptome project. Three different pathways - photoreactivation, base excision repair and nucleotide excision repair - were investigated by employing known DNA repair proteins as probes to identify homologous ESTs in sugarcane, by means of computer similarity search. The results showed that DNA repair genes may have differential expressions in tissues, depending on the pathway studied. These in silico data provide important clues on the potential variation of gene expression, to be confirmed by direct biochemical analysis.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2055-2055
Author(s):  
Raphael Szalat ◽  
Matija Dreze ◽  
Mehmet Kemal Samur ◽  
Anne S. Calkins ◽  
Giovanni Parmigiani ◽  
...  

Abstract Introduction Multiple Myeloma (MM) is a heterogeneous disease characterized by genomic instability and eventual poor outcome. Aberrations in DNA repair-related pathways have been considered to explain the instability. Nucleotide excision repair (NER) is an important pathway involved in the removal of bulky adducts and DNA crosslinks induced by various genotoxins. Little is known about the relationship between NER in MM biology and patient outcomes. Here we assess the role of NER in MM. Methods We evaluated NER efficiency in a panel of MM cell lines (n=18), with a functional assay based on the purified DNA-Damage Binding protein 2 (DDB2) complex (DDB2 proteo-probe, Dreze et al. 2014). NER proficiency was correlated with cytogenetic characteristics, p53 status, sequencing data, gene expression profile, and with melphalan (MLP) sensitivity evaluated by CellTiterGlo (CTG). We then evaluated NER efficiency in patient samples and interrogated the role of NER in MM patients by correlating expression of NER genes with survival (OS) in a cohort of 170 patients (IFM 2005-01) homogeneously treated with alkylating agents. Results NER, measured as the amount of (6-4) photoproducts remaining 2 hours after UV irradiation, showed variability between MM cell lines. Out of 18 cell lines, 7 exhibited various levels of NER deficiencies, defined as less than 90% repair at 2 hours (4 cell lines 90-70% and 3 cell lines <60%). The other 11 cell lines presented more than 90% of repair. P53 loss of function did not associate with NER deficiency. Notably, all t(4;14) cell lines tested (n=5) showed a NER repair rate > 90%. NER deficient cell lines (NER <90%) were sensitive to melphalan. However all melphalan sensitive cells did not exhibit NER deficiency, This suggests that other DNA repair pathways are involved in the repair of melphalan-induced lesions. Furthermore, we performed the assay in patient samples showing variable levels of NER, which may reflect different disease status and prognosis. Whole genome sequencing data from 6 NER deficient cell lines revealed missense mutations in critical NER genes in 2 of these cell lines. MM1S and MM1R cells showed mutations in the Xeroderma Pigmentosum Complementation Group A (XPA) gene (mutation D70H), and MM1R was also mutated in the Cockayne syndrome, ERCC6 gene (mutation L682I). Gene expression profile comparison in 12 of these showed a positive correlation between expression of NER genes and NER efficiency. We next studied expression of 20 NER genes in 170 patients treated with high dose melphalan (IFM 2005-01). The analysis revealed a significant negative correlation between 5 overexpressed NER genes (ERCC3, ERCC4, ERCC6, MMS19 and NTHL1) and overall survival (OS). Conclusion NER efficiency is heterogeneous in MM, in part due to acquired mutations. Impairment of NER is associated with outcome as well as may contribute to genomic instability. Ability to proficiently measure NER in patient samples provides us an opportunity to now evaluate NER as a prognostic marker in myeloma. Disclosures No relevant conflicts of interest to declare.


1997 ◽  
Vol 186 (3) ◽  
pp. 413-419 ◽  
Author(s):  
Nayun Kim ◽  
Karen Kage ◽  
Fumihiko Matsuda ◽  
Marie-Paule Lefranc ◽  
Ursula Storb

Recent experiments have strongly suggested that the process of somatic mutation is linked to transcription initiation. It was postulated that a mutator factor loads onto the RNA polymerase and, during elongation, causes transcriptional arrest that activates DNA repair, thus occasionally causing errors in the DNA sequence. We report the analysis of the role of one of the known DNA repair systems, nucleotide excision repair (NER), in somatic mutation. Epstein–Barrvirus-transformed B cells from patients with defects in NER (XP-B, XP-D, XP-V, and CS-A) were studied. Their heavy and light chain genes show a high frequency of point mutations in the variable (V), but not in the constant (C) regions. This suggests that these B cells can undergo somatic hypermutation despite significant defects in NER. Thus, it is doubtful that NER is an essential part of the mechanism of somatic hypermutation of Ig genes. As an aside, NER seems also not involved in Ig gene switch recombination.


2019 ◽  
Author(s):  
JT Barnett ◽  
J Kuper ◽  
W Koelmel ◽  
C Kisker ◽  
NM Kad

AbstractNucleotide excision repair (NER) protects the genome following exposure to diverse types of DNA damage, including UV light and chemotherapeutics. Mutations in mammalian NER genes lead to diseases such as xeroderma pigmentosum, trichothiodystrophy, and Cockayne syndrome. In eukaryotes, the major transcription factor TFIIH is the central hub of NER. The core components of TFIIH include the helicases XPB, XPD, and five ‘structural’ subunits. Two of these structural TFIIH proteins, p44 and p62 remain relatively unstudied; p44 is known to regulate the helicase activity of XPD during NER whereas p62’s role is thought to be structural. However, a recent cryo-EM structure shows that p44, p62, and XPD make extensive contacts within TFIIH, with part of p62 occupying XPD’s DNA binding site. This observation implies a more extensive role in DNA repair beyond the structural integrity of TFIIH. Here, we show that p44 stimulates XPD’s ATPase but upon encountering DNA damage, further stimulation is only observed when p62 is part of the ternary complex; suggesting a role for the p44/p62 heterodimer in TFIIH’s mechanism of damage detection. Using single molecule imaging, we demonstrate that p44/p62 independently interacts with DNA; it is seen to diffuse, however, in the presence of UV-induced DNA lesions the complex stalls. Combined with the analysis of a recent cryo-EM structure we suggest that p44/p62 acts as a novel DNA-binding entity within TFIIH that is capable of recognizing DNA damage. This revises our understanding of TFIIH and prompts more extensive investigation into the core subunits for an active role during both DNA repair and transcription.


Sign in / Sign up

Export Citation Format

Share Document