scholarly journals Neutrophil and Macrophage Cell Surface Colony-Stimulating Factor 1 Shed by ADAM17 Drives Mouse Macrophage Proliferation in Acute and Chronic Inflammation

2018 ◽  
Vol 38 (17) ◽  
Author(s):  
Jingjing Tang ◽  
Jeremy M. Frey ◽  
Carole L. Wilson ◽  
Angela Moncada-Pazos ◽  
Clémence Levet ◽  
...  

ABSTRACT Macrophages are prominent cells in acute and chronic inflammatory diseases. Recent studies highlight a role for macrophage proliferation post-monocyte recruitment under inflammatory conditions. Using an acute peritonitis model, we identify a significant defect in macrophage proliferation in mice lacking the leukocyte transmembrane protease ADAM17. The defect is associated with decreased levels of macrophage colony-stimulating factor 1 (CSF-1) in the peritoneum and is rescued by intraperitoneal injection of CSF-1. Cell surface CSF-1 (csCSF-1) is one of the substrates of ADAM17. We demonstrate that both infiltrated neutrophils and macrophages are major sources of csCSF-1. Furthermore, acute shedding of csCSF-1 following neutrophil extravasation is associated with elevated expression of iRhom2, a member of the rhomboid-like superfamily, which promotes ADAM17 maturation and trafficking to the neutrophil surface. Accordingly, deletion of hematopoietic iRhom2 is sufficient to prevent csCSF-1 release from neutrophils and macrophages and to prevent macrophage proliferation. In acute inflammation, csCSF-1 release and macrophage proliferation are self-limiting due to transient leukocyte recruitment and temporally restricted csCSF-1 expression. In chronic inflammation, such as atherosclerosis, the ADAM17-mediated lesional macrophage proliferative response is prolonged. Our results demonstrate a novel mechanism whereby ADAM17 promotes macrophage proliferation in states of acute and chronic inflammation.

2000 ◽  
Vol 20 (8) ◽  
pp. 2734-2742 ◽  
Author(s):  
Yi-Hung Lin ◽  
Chang-Jen Huang ◽  
Jyh-Rong Chao ◽  
Shui-Tsung Chen ◽  
Shern-Fwu Lee ◽  
...  

ABSTRACT The receptors for interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) share a common β subunit, the distal cytoplasmic domain of which is essential for the promotion of cell survival by these two cytokines. Genes whose expression is specifically induced by signaling through the distal cytoplasmic domain of this receptor β subunit were screened by a subtraction cloning approach in derivatives of a mouse pro-B-cell line. One gene thus identified was shown to encode a protein highly homologous (with only 7 amino acid substitutions) to murine osteopontin (OPN), a secreted adhesion protein. Conditioned medium from cells expressing wild-type OPN, but not that from cells expressing a deletion mutant lacking residues 79 to 140, increased the viability of a non-OPN-producing cell line in the presence of human GM-CSF. Antibody blocking experiments revealed that OPN produced as a result of IL-3 or GM-CSF signaling was secreted into the medium and, through binding to its cell surface receptor, CD44, contributed to the survival-promoting activities of these two cytokines. Furthermore, coupling of the OPN-CD44 pathway to the survival response to IL-3 was also demonstrated in primary IL-3-dependent mouse bone marrow cells. These results thus show that induction of an extracellular adhesion protein and consequent activation of its cell surface receptor are important for the antiapoptotic activities of IL-3 and GM-CSF.


Blood ◽  
1990 ◽  
Vol 76 (7) ◽  
pp. 1308-1314 ◽  
Author(s):  
J Stein ◽  
GV Borzillo ◽  
CW Rettenmier

Secreted forms of macrophage colony-stimulating factor (M-CSF or CSF-1) are generated by proteolytic cleavage of membrane-bound glycoprotein precursors. Alternatively spliced transcripts of the human CSF-1 gene encode at least two different transmembrane precursors that are differentially processed in mammalian expression systems. The larger precursor rapidly undergoes proteolysis to yield the secreted growth factor and does not give rise to forms of CSF-1 detected on the cell surface. By contrast, the smaller human CSF-1 precursor is stably expressed on the plasma membrane where it is inefficiently cleaved to release a soluble molecule. To determine whether the smaller precursor is biologically active on the cell surface, mouse NIH-3T3 fibroblasts expressing the different forms of human CSF-1 were killed by chemical fixation and tested for their ability to support the proliferation of cells that require this growth factor. Only fixed cells expressing human CSF-1 precursors on their surface stimulated the growth in vitro of a murine macrophage cell line or normal mouse bone marrow-derived mononuclear phagocytes. The ability of these nonviable fibroblasts to induce the proliferation of CSF-1-dependent cells was not mediated by release of soluble growth factor, required direct contact with the target cells, and was blocked by neutralizing antiserum to CSF-1. These results demonstrate that the cell surface form of the human CSF-1 precursor is biologically active and indicate that plasma membrane- bound growth factors can functionally interact with receptor-bearing targets by direct cell-cell contact.


1996 ◽  
Vol 271 (27) ◽  
pp. 16338-16343 ◽  
Author(s):  
Ping Deng ◽  
Carl W. Rettenmier ◽  
Paul K. Pattengale ◽  
Carl W. Rettenmier ◽  
Carl W. Rettenmier

2000 ◽  
Vol 347 (1) ◽  
pp. 313-320 ◽  
Author(s):  
Lindsay F. FOWLES ◽  
Katryn J. STACEY ◽  
Denese MARKS ◽  
John A. HAMILTON ◽  
David A. HUME

Macrophage colony-stimulating factor (CSF-1) binds to a receptor (CSF-1R) encoded by the c-fms proto-oncogene and activates transcription of the urokinase plasminogen activator (uPA) gene in murine bone-marrow-derived macrophages. This article demonstrates that the murine macrophage cell line RAW264 responds to CSF-1 with inducible phosphorylation of cytoplasmic proteins on tyrosine residues but fails to induce transcription of uPA. The defect was correlated with a selective failure to maintain CSF-1Rs on the cell surface, whereas all RAW264 cells contained abundant CSF-1Rs within the presumptive Golgi/endoplasmic reticulum compartment. Transfection with a CSF-1R expression plasmid permitted CSF-1-dependent activation of the signalling pathway targeting an Ets/AP1 (activator protein 1) element in the uPA promoter that has been shown previously to be a target of oncogenic ras and protein kinase C pathways. Mutation of the expressed CSF-1R at either Y807 or Y559, sites of receptor tyrosine phosphorylation implicated in signal transduction, reduced but did not abolish uPA promoter activation by CSF-1. Activation by mutant CSF-1R plasmids was additive; there was no evidence of mutual complementation. The results indicate that maintenance of elevated uPA transcription by CSF-1 requires new receptors emerging continuously on the cell surface. Parallel, partly redundant, signalling pathways arising from phosphorylated tyrosines on the CSF-1R activate multiple cis-acting elements on the complex uPA promoter.


2018 ◽  
Vol 317 ◽  
pp. 45-54 ◽  
Author(s):  
Jaime Imitola ◽  
Javad Rasouli ◽  
Fumihiro Watanabe ◽  
Kader Mahajan ◽  
Aswhini D. Sharan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document