scholarly journals Cyclic AMP Controls mTOR through Regulation of the Dynamic Interaction between Rheb and Phosphodiesterase 4D

2010 ◽  
Vol 30 (22) ◽  
pp. 5406-5420 ◽  
Author(s):  
Hyun Wook Kim ◽  
Sang Hoon Ha ◽  
Mi Nam Lee ◽  
Elaine Huston ◽  
Do-Hyung Kim ◽  
...  

ABSTRACT The mammalian target of rapamycin complex 1 (mTORC1) is a molecular hub that regulates protein synthesis in response to a number of extracellular stimuli. Cyclic AMP (cAMP) is considered to be an important second messenger that controls mTOR; however, the signaling components of this pathway have not yet been elucidated. Here, we identify cAMP phosphodiesterase 4D (PDE4D) as a binding partner of Rheb that acts as a cAMP-specific negative regulator of mTORC1. Under basal conditions, PDE4D binds Rheb in a noncatalytic manner that does not require its cAMP-hydrolyzing activity and thereby inhibits the ability of Rheb to activate mTORC1. However, elevated cAMP levels disrupt the interaction of PDE4D with Rheb and increase the interaction between Rheb and mTOR. This enhanced Rheb-mTOR interaction induces the activation of mTORC1 and cap-dependent translation, a cellular function of mTORC1. Taken together, our results suggest a novel regulatory mechanism for mTORC1 in which the cAMP-determined dynamic interaction between Rheb and PDE4D provides a key, unique regulatory event. We also propose a new role for PDE4 as a molecular transducer for cAMP signaling.

Development ◽  
1988 ◽  
Vol 103 (3) ◽  
pp. 611-618 ◽  
Author(s):  
M. Wang ◽  
R. van Driel ◽  
P. Schaap

We investigated whether cyclic AMP is an essential extracellular stimulus for the differentiation of prespore cells in slugs of D. discoideum. A local reduction of the extracellular cAMP level inside the slug was induced by implantation of cAMP-phosphodiesterase (cAMP-PDE)-coated spheres in intact slugs. This treatment caused the disappearance of prespore antigen in the vicinity of the sphere. A general reduction of extracellular cAMP levels in slugs, induced by submerging slugs in 0.25i.u.ml-1 cAMP-PDE, reduced the proportion of prespore cells from 66% to 15%, without affecting slug morphology. The cAMP-PDE-induced dedifferentiation of prespore cells was counteracted by cAMP and was not due to the production of the hydrolysis product 5′AMP, but to the reduction of extracellular cAMP levels. We conclude that extracellular cAMP is the major morphogenetic signal for the differentiation of prespore cells in the multicellular stages of D. discoideum development and we present a working hypothesis for the generation of the prestalk/prespore pattern during multicellular development.


1996 ◽  
Vol 74 (5) ◽  
pp. 669-674 ◽  
Author(s):  
Bijay S. Jaiswal ◽  
Gopal C. Majumder

The concentrations of cAMP, cAMP phosphodiesterase (PDE) activity, and the effect of theophylline in vitro on the forward motility (FM) of maturing goat epididymal sperm have been analyzed. cAMP levels increased slowly during transit of the cells from the caput to the proximal cauda, although they acquired a minimal degree of forward progression. The last phase of sperm transit (proximal to distal cauda) was associated with a concomitant sharp rise in the level of both c AMP as well as flagellar motility. PDE activity progressively decreased (approximately threefold) during epididymal maturation, being minimal in mature cauda sperm. Theophylline (30 mM), a specific inhibitor of PDE, markedly activated (10-fold or greater) motility of the sperm derived from proximal-corpus, mid-corpus, distal-corpus, and proximal-cauda epididymides. FM of the native mature caudal sperm was similar to that of the theophylline-treated proximal-cauda sperm. The terminal stage of sperm maturity (proximal to distal cauda) was associated with a markedly reduced level of theophylline-dependent motility activation (approximately 50%). The data are consistent with the view that PDE plays an important role in the initiation of motility during epididymal sperm maturation.Key words: epididymal sperm, cyclic AMP, cyclic AMP phosphodiesterase, flagellar motility, theophylline


2017 ◽  
Vol 199 (16) ◽  
Author(s):  
Ryan N. C. Buensuceso ◽  
Martin Daniel-Ivad ◽  
Sara L. N. Kilmury ◽  
Tiffany L. Leighton ◽  
Hanjeong Harvey ◽  
...  

ABSTRACT FimV is a Pseudomonas aeruginosa inner membrane hub protein that modulates levels of the second messenger, cyclic AMP (cAMP), through the activation of adenylate cyclase CyaB. Although type IVa pilus (T4aP)-dependent twitching motility is modulated by cAMP levels, mutants lacking FimV are twitching impaired, even when exogenous cAMP is provided. Here we further define FimV's cAMP-dependent and -independent regulation of twitching. We confirmed that the response regulator of the T4aP-associated Chp chemotaxis system, PilG, requires both FimV and the CyaB regulator, FimL, to activate CyaB. However, in cAMP-replete backgrounds—lacking the cAMP phosphodiesterase CpdA or the CheY-like protein PilH or expressing constitutively active CyaB—pilG and fimV mutants failed to twitch. Both cytoplasmic and periplasmic domains of FimV were important for its cAMP-dependent and -independent roles, while its septal peptidoglycan-targeting LysM motif was required only for twitching motility. Polar localization of the sensor kinase PilS, a key regulator of transcription of the major pilin, was FimV dependent. However, unlike its homologues in other species that localize flagellar system components, FimV was not required for swimming motility. These data provide further evidence to support FimV's role as a key hub protein that coordinates the polar localization and function of multiple structural and regulatory proteins involved in P. aeruginosa twitching motility. IMPORTANCE Pseudomonas aeruginosa is a serious opportunistic pathogen. Type IVa pili (T4aP) are important for its virulence, because they mediate dissemination and invasion via twitching motility and are involved in surface sensing, which modulates pathogenicity via changes in cAMP levels. Here we show that the hub protein FimV and the response regulator of the Chp system, PilG, regulate twitching independently of their roles in the modulation of cAMP synthesis. These functions do not require the putative scaffold protein FimL, proposed to link PilG with FimV. PilG may regulate asymmetric functioning of the T4aP system to allow for directional movement, while FimV appears to localize both structural and regulatory elements—including the PilSR two-component system—to cell poles for optimal function.


1998 ◽  
Vol 180 (17) ◽  
pp. 4401-4405 ◽  
Author(s):  
Leah P. Macfadyen ◽  
Caixia Ma ◽  
Rosemary J. Redfield

ABSTRACT Changes in intracellular 3′,5′ cyclic AMP (cAMP) concentration regulate the development of natural competence inHaemophilus influenzae. In Escherichia coli, cAMP levels are modulated by a cAMP phosphodiesterase encoded by the cpdA gene. We have used several approaches to demonstrate that the homologous icc gene of H. influenzae encodes a functional cAMP phosphodiesterase and that this gene limits intracellular cAMP and thereby influences competence and other cAMP-dependent processes. In E. coli, expression of cloned icc reduced both cAMP-dependent sugar fermentation and β-galactosidase expression, as has been shown forcpdA. In H. influenzae, an icc null mutation increased cAMP-dependent sugar fermentation and competence development in strains where these processes are limited by mutations reducing cAMP synthesis. When endogenous production of cAMP was eliminated by a cya mutation, an icc strain was 10,000-fold more sensitive to exogenous cAMP than anicc + strain. The icc strain showed moderately elevated competence under noninducing conditions, as expected, but had subnormal competence increases at onset of stationary phase in rich medium, and on transfer to a nutrient-limited medium, suggesting that excessive cAMP may interfere with induction. Consistent with this finding, a cya strain cultured in 1 mM cAMP failed to develop maximal competence on transfer to inducing conditions. Thus, by limiting cAMP levels, the H. influenzae cAMP phosphodiesterase may coordinate its responses to nutritional stress, ensuring optimal competence development.


1993 ◽  
Vol 70 (05) ◽  
pp. 822-825 ◽  
Author(s):  
B Hoet ◽  
J Arnout ◽  
H Deckmyn ◽  
J Vermylen

SummaryRidogrel, a combined thromboxane receptor antagonist and thromboxane synthase inhibitor (1), inhibits platelet aggregation. Following stimulation with arachidonic acid, cAMP-levels are increased in human platelets preincubated with ridogrel, this is due to the known reorientation of the metabolism of the formed endoperoxides towards adenylate cyclase stimulating prostaglandins.Pretreatment of resting platelets with UDCG-212, a cAMP-phosphodiesterase inhibitor (2), also inhibits platelet aggregation induced by arachidonic acid, concomitant with an increase in cAMP levels, due to an inhibition of its breakdown. Under basal conditions, cAMP also is increased.By combining the two drugs, a more than additive action was observed on platelet aggregation and on both resting and stimulated platelet cAMP content. The appropriate combination may result in a more effective antiplatelet strategy.


1990 ◽  
Vol 265 (10) ◽  
pp. 5840-5846
Author(s):  
M M Van Lookeren Campagne ◽  
E Wu ◽  
R D Fleischmann ◽  
M M Gottesman ◽  
K W Chason ◽  
...  

Genetics ◽  
1979 ◽  
Vol 91 (3) ◽  
pp. 521-535
Author(s):  
John A Kiger ◽  
Eric Golanty

ABSTRACT Two cyclic AMP phosphodiesterase enzymes (E.C.3.1.4.17) are present in homogenates of adult Drosophila melanogaster. The two enzymes differ from one another in heat stability, affinity for Mg++, Ca++ activation and molecular weight. They do not differ markedly in their affinities for cyclic AMP, and both exhibit anomalous Michaelis-Menten kinetics. The more heatlabile enzyme is controlled in a dosage-dependent manner by chromomere 3D4 of the X chromosome and is absent in flies that are deficient for chromomere 3D4. Chromomere 3D4 is also necessary for the maintenance of normal cAMP levels, for male fertility, and for normal female fertility and oogenesis. The structural gene(s) for the more heat-stable enzyme is located outside of chromomeres 3C12-3D4. Whether 3D4 contains a structural gene, or a regulatory gene necessary for the presence of the labile enzyme, remains to be determined.


2001 ◽  
Vol 183 (10) ◽  
pp. 3211-3223 ◽  
Author(s):  
Yong-Sun Bahn ◽  
Paula Sundstrom

ABSTRACT In response to a wide variety of environmental stimuli, the opportunistic fungal pathogen Candida albicans exits the budding cycle, producing germ tubes and hyphae concomitant with expression of virulence genes, such as that encoding hyphal wall protein 1 (HWP1). Biochemical studies implicate cyclic AMP (cAMP) increases in promoting bud-hypha transitions, but genetic evidence relating genes that control cAMP levels to bud-hypha transitions has not been reported. Adenylate cyclase-associated proteins (CAPs) of nonpathogenic fungi interact with Ras and adenylate cyclase to increase cAMP levels under specific environmental conditions. To initiate studies on the relationship between cAMP signaling and bud-hypha transitions in C. albicans, we identified, cloned, characterized, and disrupted the C. albicans CAP1 gene. C. albicans strains with inactivated CAP1 budded in conditions that led to germ tube formation in isogenic strains withCAP1. The addition of 10 mM cAMP and dibutyryl cAMP promoted bud-hypha transitions and filamentous growth in thecap1/cap1 mutant in liquid and solid media, respectively, showing clearly that cAMP promotes hypha formation in C. albicans. Increases in cytoplasmic cAMP preceding germ tube emergence in strains having CAP1 were markedly diminished in the budding cap1/cap1 mutant. C. albicans strains with deletions of both alleles ofCAP1 were avirulent in a mouse model of systemic candidiasis. The avirulence of a germ tube-deficientcap1/cap1 mutant coupled with the role of Cap1 in regulating cAMP levels shows that the Cap1-mediated cAMP signaling pathway is required for bud-hypha transitions, filamentous growth, and the pathogenesis of candidiasis.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 519
Author(s):  
Kasidid Ruksakiet ◽  
Balázs Stercz ◽  
Gergő Tóth ◽  
Pongsiri Jaikumpun ◽  
Ilona Gróf ◽  
...  

The formation of Pseudomonas aeruginosa biofilms in cystic fibrosis (CF) is one of the most common causes of morbidity and mortality in CF patients. Cyclic di-GMP and cyclic AMP are second messengers regulating the bacterial lifestyle transition in response to environmental signals. We aimed to investigate the effects of extracellular pH and bicarbonate on intracellular c-di-GMP and cAMP levels, and on biofilm formation. P. aeruginosa was inoculated in a brain–heart infusion medium supplemented with 25 and 50 mM NaCl in ambient air (pH adjusted to 7.4 and 7.7 respectively), or with 25 and 50 mM NaHCO3 in 5% CO2 (pH 7.4 and 7.7). After 16 h incubation, c-di-GMP and cAMP were extracted and their concentrations determined. Biofilm formation was investigated using an xCelligence real-time cell analyzer and by crystal violet assay. Our results show that HCO3− exposure decreased c-di-GMP and increased cAMP levels in a dose-dependent manner. Biofilm formation was also reduced after 48 h exposure to HCO3−. The reciprocal changes in second messenger concentrations were not influenced by changes in medium pH or osmolality. These findings indicate that HCO3− per se modulates the levels of c-di-GMP and cAMP, thereby inhibiting biofilm formation and promoting the planktonic lifestyle of the bacteria.


Sign in / Sign up

Export Citation Format

Share Document