scholarly journals Cyclin-Specific Control of Ribosomal DNA Segregation

2008 ◽  
Vol 28 (17) ◽  
pp. 5328-5336 ◽  
Author(s):  
Matt Sullivan ◽  
Liam Holt ◽  
David O. Morgan

ABSTRACT Following chromosome duplication in S phase of the cell cycle, the sister chromatids are linked by cohesin. At the onset of anaphase, separase cleaves cohesin and thereby initiates sister chromatid separation. Separase activation results from the destruction of its inhibitor, securin, which is triggered by a ubiquitin ligase called the anaphase-promoting complex (APC). Here, we show in budding yeast that securin destruction and, thus, separase activation are not sufficient for the efficient segregation of the repetitive ribosomal DNA (rDNA). We find that rDNA segregation also requires the APC-mediated destruction of the S-phase cyclin Clb5, an activator of the protein kinase Cdk1. Mutations that prevent Clb5 destruction are lethal and cause defects in rDNA segregation and DNA synthesis. These defects are distinct from the mitotic-exit defects caused by stabilization of the mitotic cyclin Clb2, emphasizing the importance of cyclin specificity in the regulation of late-mitotic events. Efficient rDNA segregation, both in mitosis and meiosis, also requires APC-dependent destruction of Dbf4, an activator of the protein kinase Cdc7. We speculate that the dephosphorylation of Clb5-specific Cdk1 substrates and Dbf4-Cdc7 substrates drives the resolution of rDNA in early anaphase. The coincident destruction of securin, Clb5, and Dbf4 coordinates bulk chromosome segregation with segregation of rDNA.

2013 ◽  
Vol 201 (7) ◽  
pp. 1013-1026 ◽  
Author(s):  
Linda Clijsters ◽  
Janneke Ogink ◽  
Rob Wolthuis

DNA replication depends on a preceding licensing event by Cdt1 and Cdc6. In animal cells, relicensing after S phase but before mitosis is prevented by the Cdt1 inhibitor geminin and mitotic cyclin activity. Here, we show that geminin, like cyclin B1 and securin, is a bona fide target of the spindle checkpoint and APC/CCdc20. Cyclin B1 and geminin are degraded simultaneously during metaphase, which directs Cdt1 accumulation on segregating sister chromatids. Subsequent activation of APC/CCdh1 leads to degradation of Cdc6 well before Cdt1 becomes unstable in a replication-coupled manner. In mitosis, the spindle checkpoint supports Cdt1 accumulation, which promotes S phase onset. We conclude that the spindle checkpoint, APC/CCdc20, and APC/CCdh1 act successively to ensure that the disappearance of licensing inhibitors coincides exactly with a peak of Cdt1 and Cdc6. Whereas cell cycle entry from quiescence requires Cdc6 resynthesis, our results indicate that proliferating cells use a window of time in mitosis, before Cdc6 is degraded, as an earlier opportunity to direct S phase.


2006 ◽  
Vol 26 (16) ◽  
pp. 6239-6247 ◽  
Author(s):  
Brett N. Tomson ◽  
Damien D'Amours ◽  
Brittany S. Adamson ◽  
Luis Aragon ◽  
Angelika Amon

ABSTRACT The ribosomal DNA (rDNA) is a specialized genomic region not only owing to its function as the nucleolar organizing region (NOR) but also because it is repetitive in nature and, at least in budding yeast, silenced for polymerase II (Pol II)-mediated transcription. Furthermore, cohesin-independent linkages hold the sister chromatids together at the rDNA loci, and their resolution requires the activity of the conserved protein phosphatase Cdc14. Here we show that rRNA transcription-dependent processes establish linkages at the rDNA, which affect segregation of this locus. Inactivation of Cfi1/Net1, a protein required for efficient rRNA transcription, or elimination of Pol I activity, which drives rRNA transcription, diminishes the need for CDC14 in rDNA segregation. Our results identify Pol I transcription-dependent processes as a novel means of establishing linkages between chromosomes.


2005 ◽  
Vol 25 (2) ◽  
pp. 767-778 ◽  
Author(s):  
Ju-mei Li ◽  
Yumei Li ◽  
Stephen J. Elledge

ABSTRACT DASH is a microtubule- and kinetochore-associated complex required for proper chromosome segregation and bipolar attachment of sister chromatids on the mitotic spindle. We have undertaken a genetic and biochemical analysis of the DASH complex and uncovered a strong genetic interaction of DASH with the Ras/protein kinase A (PKA) pathway. Overexpression of PDE2 or deletion of RAS2 rescued the temperature sensitivity of ask1-3 mutants. Ras2 negatively regulates DASH through the PKA pathway. Constitutive PKA activity caused by mutation of the negative regulator BCY1 is toxic to DASH mutants such as ask1 and dam1. In addition, we have discovered two novel subunits of DASH, Hsk2 and Hsk3 (helper of Ask1), which are microproteins of fewer than 75 amino acids, as dosage suppressors of ask1 mutants. These are essential genes that colocalize with DASH components on spindles and kinetochores and are present in the DASH complex. Mutants in hsk3 arrest cells in mitosis with short spindles and broken spindle structures characteristic of other DASH mutants. Hsk3 is critical for the integrity of the DASH complex because in hsk3 mutants the association of Dam1, Duo1, Spc34, and Spc19 with Ask1 is greatly diminished. We propose that Hsk3 acts to incorporate Ask1 into the DASH complex.


2016 ◽  
Vol 113 (4) ◽  
pp. 966-971 ◽  
Author(s):  
Sharon Kaisari ◽  
Danielle Sitry-Shevah ◽  
Shirly Miniowitz-Shemtov ◽  
Avram Hershko

The mitotic (or spindle assembly) checkpoint system prevents premature separation of sister chromatids in mitosis and thus ensures the fidelity of chromosome segregation. Kinetochores that are not attached properly to the mitotic spindle produce an inhibitory signal that prevents progression into anaphase. The checkpoint system acts on the Anaphase-Promoting Complex/Cyclosome (APC/C) ubiquitin ligase, which targets for degradation inhibitors of anaphase initiation. APC/C is inhibited by the Mitotic Checkpoint Complex (MCC), which assembles when the checkpoint is activated. MCC is composed of the checkpoint proteins BubR1, Bub3, and Mad2, associated with the APC/C coactivator Cdc20. The intermediary processes in the assembly of MCC are not sufficiently understood. It is also not clear whether or not some subcomplexes of MCC inhibit the APC/C and whether Mad2 is required only for MCC assembly and not for its action on the APC/C. We used purified subcomplexes of mitotic checkpoint proteins to examine these problems. Our results do not support a model in which Mad2 catalytically generates a Mad2-free APC/C inhibitor. We also found that the release of Mad2 from MCC caused a marked (although not complete) decrease in inhibitory action, suggesting a role of Mad2 in MCC for APC/C inhibition. A previously unknown species of MCC, which consists of Mad2, BubR1, and two molecules of Cdc20, contributes to the inhibition of APC/C by the mitotic checkpoint system.


2002 ◽  
Vol 13 (11) ◽  
pp. 3890-3900 ◽  
Author(s):  
Eric M. Balicky ◽  
Matthew W. Endres ◽  
Cary Lai ◽  
Sharon E. Bickel

Cohesion between sister chromatids is a prerequisite for accurate chromosome segregation during mitosis and meiosis. To allow chromosome condensation during prophase, the connections that hold sister chromatids together must be maintained but still permit extensive chromatin compaction. In Drosophila, null mutations in the orientation disruptor (ord) gene lead to meiotic nondisjunction in males and females because cohesion is absent by the time that sister kinetochores make stable microtubule attachments. We provide evidence that ORD is concentrated within the extrachromosomal domains of the nuclei ofDrosophila primary spermatocytes during early G2, but accumulates on the meiotic chromosomes by mid to late G2. Moreover, using fluorescence in situ hybridization to monitor cohesion directly, we show that cohesion defects first become detectable inord null spermatocytes shortly after the time when wild-type ORD associates with the chromosomes. After condensation, ORD remains bound at the centromeres of wild-type spermatocytes and persists there until centromeric cohesion is released during anaphase II. Our results suggest that association of ORD with meiotic chromosomes during mid to late G2 is required to maintain sister-chromatid cohesion during prophase condensation and that retention of ORD at the centromeres after condensation ensures the maintenance of centromeric cohesion until anaphase II.


2020 ◽  
Author(s):  
Damien Garrido ◽  
Mohammed Bourouh ◽  
Éric Bonneil ◽  
Pierre Thibault ◽  
Andrew Swan ◽  
...  

ABSTRACTIn mitosis and meiosis, chromosome segregation is triggered by the Anaphase-Promoting Complex/Cyclosome (APC/C), a multi-subunit ubiquitin ligase that targets proteins for degradation, leading to the separation of chromatids. APC/C activation requires phosphorylation of its APC3 and APC1 subunits, which allows the APC/C to bind its Cdc20 co-activator. The identity of the kinase(s) responsible for APC/C activation in vivo is unclear. Cyclin B3 is required for meiotic anaphase in flies, worms and vertebrates, but whether it activates the APC/C is unclear. We found that Drosophila Cyclin B3 (CycB3) collaborates with PP2A-B55/Tws in embryonic development, indicating that CycB3 also promotes anaphase in mitosis. Moreover, CycB3 promotes APC/C activity and anaphase in cells in culture. We show that CycB3 physically associates with the APC/C, is required for phosphorylation of APC3, and promotes APC/C association with its co-activators. We propose that CycB3-Cdk1 directly phosphorylates the APC/C to activate it in both meiosis and mitosis.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 902
Author(s):  
Alice Finardi ◽  
Lucia F. Massari ◽  
Rosella Visintin

At each round of cell division, the DNA must be correctly duplicated and distributed between the two daughter cells to maintain genome identity. In order to achieve proper chromosome replication and segregation, sister chromatids must be recognized as such and kept together until their separation. This process of cohesion is mainly achieved through proteinaceous linkages of cohesin complexes, which are loaded on the sister chromatids as they are generated during S phase. Cohesion between sister chromatids must be fully removed at anaphase to allow chromosome segregation. Other (non-proteinaceous) sources of cohesion between sister chromatids consist of DNA linkages or sister chromatid intertwines. DNA linkages are a natural consequence of DNA replication, but must be timely resolved before chromosome segregation to avoid the arising of DNA lesions and genome instability, a hallmark of cancer development. As complete resolution of sister chromatid intertwines only occurs during chromosome segregation, it is not clear whether DNA linkages that persist in mitosis are simply an unwanted leftover or whether they have a functional role. In this review, we provide an overview of DNA linkages between sister chromatids, from their origin to their resolution, and we discuss the consequences of a failure in their detection and processing and speculate on their potential role.


2001 ◽  
Vol 21 (15) ◽  
pp. 5071-5081 ◽  
Author(s):  
Foong May Yeong ◽  
Hong Hwa Lim ◽  
Ya Wang ◽  
Uttam Surana

ABSTRACT Periodic accumulation and destruction of mitotic cyclins are important for the initiation and termination of M phase. It is known that both APCCdc20 and APCHct1 collaborate to destroy mitotic cyclins during M phase. Here we show that this relationship between anaphase-promoting complex (APC) and Clb proteins is reversed in S phase such that the early Clb kinases (Clb3, Clb4, and Clb5 kinases) inactivate APCHct1 to allow Clb2 accumulation. This alternating antagonism between APC and Clb proteins during S and M phases constitutes an oscillatory system that generates undulations in the levels of mitotic cyclins.


2015 ◽  
Vol 26 (1) ◽  
pp. 117-133 ◽  
Author(s):  
Vincent Guacci ◽  
Jeremiah Stricklin ◽  
Michelle S. Bloom ◽  
Xuánzōng Guō ◽  
Meghna Bhatter ◽  
...  

Cohesin complex mediates cohesion between sister chromatids, which promotes high-fidelity chromosome segregation. Eco1p acetylates the cohesin subunit Smc3p during S phase to establish cohesion. The current model posits that this Eco1p-mediated acetylation promotes establishment by abrogating the ability of Wpl1p to destabilize cohesin binding to chromosomes. Here we present data from budding yeast that is incompatible with this Wpl1p-centric model. Two independent in vivo assays show that a wpl1∆ fails to suppress cohesion defects of eco1∆ cells. Moreover, a wpl1∆ also fails to suppress cohesion defects engendered by blocking just the essential Eco1p acetylation sites on Smc3p (K112, K113). Thus removing WPL1 inhibition is insufficient for generating cohesion without ECO1 activity. To elucidate how ECO1 promotes cohesion, we conducted a genetic screen and identified a cohesion activator mutation in the SMC3 head domain (D1189H). Smc3-D1189H partially restores cohesion in eco1∆ wpl1∆ or eco1 mutant cells but robustly restores cohesion in cells blocked for Smc3p K112 K113 acetylation. These data support two important conclusions. First, acetylation of the K112 K113 region by Eco1p promotes cohesion establishment by altering Smc3p head function independent of its ability to antagonize Wpl1p. Second, Eco1p targets other than Smc3p K112 K113 are necessary for efficient establishment.


2000 ◽  
Vol 20 (1) ◽  
pp. 242-248 ◽  
Author(s):  
Miguel Godinho Ferreira ◽  
Corrado Santocanale ◽  
Lucy S. Drury ◽  
John F. X. Diffley

ABSTRACT The Dbf4p/Cdc7p protein kinase is essential for the activation of replication origins during S phase. The catalytic subunit, Cdc7p, is present at constant levels throughout the cell cycle. In contrast, we show here that the levels of the regulatory subunit, Dbf4p, oscillate during the cell cycle. Dbf4p is absent from cells during G1and accumulates during the S and G2 phases. Dbf4p is rapidly degraded at the time of chromosome segregation and remains highly unstable during pre-Start G1 phase. The rapid degradation of Dbf4p during G1 requires a functional anaphase-promoting complex (APC). Mutation of a sequence in the N terminus of Dbf4p which resembles the cyclin destruction box eliminates this APC-dependent degradation of Dbf4p. We suggest that the coupling of Dbf4p degradation to chromosome separation may play a redundant role in ensuring that prereplicative complexes, which assemble after chromosome segregation, do not immediately refire.


Sign in / Sign up

Export Citation Format

Share Document