scholarly journals Intermediates in the assembly of mitotic checkpoint complexes and their role in the regulation of the anaphase-promoting complex

2016 ◽  
Vol 113 (4) ◽  
pp. 966-971 ◽  
Author(s):  
Sharon Kaisari ◽  
Danielle Sitry-Shevah ◽  
Shirly Miniowitz-Shemtov ◽  
Avram Hershko

The mitotic (or spindle assembly) checkpoint system prevents premature separation of sister chromatids in mitosis and thus ensures the fidelity of chromosome segregation. Kinetochores that are not attached properly to the mitotic spindle produce an inhibitory signal that prevents progression into anaphase. The checkpoint system acts on the Anaphase-Promoting Complex/Cyclosome (APC/C) ubiquitin ligase, which targets for degradation inhibitors of anaphase initiation. APC/C is inhibited by the Mitotic Checkpoint Complex (MCC), which assembles when the checkpoint is activated. MCC is composed of the checkpoint proteins BubR1, Bub3, and Mad2, associated with the APC/C coactivator Cdc20. The intermediary processes in the assembly of MCC are not sufficiently understood. It is also not clear whether or not some subcomplexes of MCC inhibit the APC/C and whether Mad2 is required only for MCC assembly and not for its action on the APC/C. We used purified subcomplexes of mitotic checkpoint proteins to examine these problems. Our results do not support a model in which Mad2 catalytically generates a Mad2-free APC/C inhibitor. We also found that the release of Mad2 from MCC caused a marked (although not complete) decrease in inhibitory action, suggesting a role of Mad2 in MCC for APC/C inhibition. A previously unknown species of MCC, which consists of Mad2, BubR1, and two molecules of Cdc20, contributes to the inhibition of APC/C by the mitotic checkpoint system.

2018 ◽  
Vol 115 (8) ◽  
pp. 1777-1782 ◽  
Author(s):  
Danielle Sitry-Shevah ◽  
Sharon Kaisari ◽  
Adar Teichner ◽  
Shirly Miniowitz-Shemtov ◽  
Avram Hershko

The mitotic checkpoint system ensures the fidelity of chromosome segregation in mitosis by preventing premature initiation of anaphase until correct bipolar attachment of chromosomes to the mitotic spindle is reached. It promotes the assembly of a mitotic checkpoint complex (MCC), composed of BubR1, Bub3, Cdc20, and Mad2, which inhibits the activity of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. When the checkpoint is satisfied, anaphase is initiated by the disassembly of MCC. Previous studies indicated that the dissociation of APC/C-bound MCC requires ubiquitylation and suggested that the target of ubiquitylation is the Cdc20 component of MCC. However, it remained unknown how ubiquitylation causes the release of MCC from APC/C and its disassembly and whether ubiquitylation of additional proteins is involved in this process. We find that ubiquitylation causes the dissociation of BubR1 from Cdc20 in MCC and suggest that this may lead to the release of MCC components from APC/C. BubR1 in MCC is ubiquitylated by APC/C, although to a lesser degree than Cdc20. The extent of BubR1 ubiquitylation was markedly increased in recombinant MCC that contained a lysine-less mutant of Cdc20. Mutation of lysine residues to arginines in the N-terminal region of BubR1 partially inhibited its ubiquitylation and slowed down the release of MCC from APC/C, provided that Cdc20 ubiquitylation was also blocked. It is suggested that ubiquitylation of both Cdc20 and BubR1 may be involved in their dissociation from each other and in the release of MCC components from APC/C.


2017 ◽  
Vol 114 (5) ◽  
pp. 956-961 ◽  
Author(s):  
Sharon Kaisari ◽  
Danielle Sitry-Shevah ◽  
Shirly Miniowitz-Shemtov ◽  
Adar Teichner ◽  
Avram Hershko

The mitotic checkpoint system prevents premature separation of sister chromatids in mitosis and thus ensures the fidelity of chromosome segregation. When this checkpoint is active, a mitotic checkpoint complex (MCC), composed of the checkpoint proteins Mad2, BubR1, Bub3, and Cdc20, is assembled. MCC inhibits the ubiquitin ligase anaphase promoting complex/cyclosome (APC/C), whose action is necessary for anaphase initiation. When the checkpoint signal is turned off, MCC is disassembled, a process required for exit from checkpoint-arrested state. Different moieties of MCC are disassembled by different ATP-requiring processes. Previous work showed that Mad2 is released from MCC by the joint action of the TRIP13 AAA-ATPase and the Mad2-binding protein p31comet. Now we have isolated from extracts of HeLa cells an ATP-dependent factor that releases Cdc20 from MCC and identified it as chaperonin containing TCP1 or TCP1–Ring complex (CCT/TRiC chaperonin), a complex known to function in protein folding. Bacterially expressed CCT5 chaperonin subunits, which form biologically active homooligomers [Sergeeva, et al. (2013)J Biol Chem288(24):17734–17744], also promote the disassembly of MCC. CCT chaperonin further binds and disassembles subcomplexes of MCC that lack Mad2. Thus, the combined action of CCT chaperonin with that of TRIP13 ATPase promotes the complete disassembly of MCC, necessary for the inactivation of the mitotic checkpoint.


Author(s):  
Sharon Kaisari ◽  
Pnina Shomer ◽  
Tamar Ziv ◽  
Danielle Sitry-Shevah ◽  
Shirly Miniowitz-Shemtov ◽  
...  

The Mad2-binding protein p31comet has important roles in the inactivation of the mitotic checkpoint system, which delays anaphase until chromosomes attach correctly to the mitotic spindle. The activation of the checkpoint promotes the assembly of a Mitotic Checkpoint Complex (MCC), which inhibits the action of the ubiquitin ligase APC/C (Anaphase-Promoting Complex/Cyclosome) to degrade inhibitors of anaphase initiation. The inactivation of the mitotic checkpoint requires the disassembly of MCC. p31comet promotes the disassembly of mitotic checkpoint complexes by liberating their Mad2 component in a joint action with the ATPase TRIP13. Here, we investigated the regulation of p31comet action. The release of Mad2 from checkpoint complexes in extracts from nocodazole-arrested HeLa cells was inhibited by Polo-like kinase 1 (Plk1), as suggested by the effects of selective inhibitors of Plk1. Purified Plk1 bound to p31comet and phosphorylated it, resulting in the suppression of its activity (with TRIP13) to disassemble checkpoint complexes. Plk1 phosphorylated p31comet on S102, as suggested by the prevention of the phosphorylation of this residue in checkpoint extracts by the selective Plk1 inhibitor BI-2536 and by the phosphorylation of S102 with purified Plk1. An S102A mutant of p31comet had a greatly decreased sensitivity to inhibition by Plk1 of its action to disassemble mitotic checkpoint complexes. We propose that the phosphorylation of p31comet by Plk1 prevents a futile cycle of MCC assembly and disassembly during the active mitotic checkpoint.


2018 ◽  
Author(s):  
Cerys E. Currie ◽  
Mar Mora-Santos ◽  
Chris Smith ◽  
Andrew D. McAinsh ◽  
Jonathan B.A. Millar

AbstractError-free chromosome segregation during mitosis depends on a functional spindle assembly checkpoint (SAC). The SAC is a multi-component signaling system that is recruited to incorrectly attached kinetochores to catalyze the formation of a soluble inhibitor, known as the mitotic checkpoint complex (MCC), which binds and inhibits the anaphase promoting complex [1]. We have previously proposed that two separable pathways, composed of KNL1-Bub3-Bub1 (KBB) and Rod-Zwilch-Zw10 (RZZ), recruit Mad1-Mad2 complexes to human kinetochores to activate the SAC [2]. We refer to this as the dual pathway model. Although Bub1 is absolutely required for MCC formation in yeast (which lack RZZ), there is conflicting evidence as to whether this is also the case in human cells based on siRNA studies [2–5]. Here we report, using genome editing, that Bub1 is not strictly required for the SAC response to unattached kinetochores in human diploid hTERT-RPE1 cells, consistent with the dual pathway model.


2017 ◽  
Vol 28 (9) ◽  
pp. 1186-1194 ◽  
Author(s):  
Lydia R. Heasley ◽  
Steven M. Markus ◽  
Jennifer G. DeLuca

The spindle assembly checkpoint ensures the faithful inheritance of chromosomes by arresting mitotic progression in the presence of kinetochores that are not attached to spindle microtubules. This is achieved through inhibition of the anaphase-promoting complex/cyclosome by a kinetochore-derived “wait anaphase” signal known as the mitotic checkpoint complex. It remains unclear whether the localization and activity of these inhibitory complexes are restricted to the mitotic spindle compartment or are diffusible throughout the cytoplasm. Here we report that “wait anaphase” signals are indeed able to diffuse outside the confines of the mitotic spindle compartment. Using a cell fusion approach to generate multinucleate cells, we investigate the effects of checkpoint signals derived from one spindle compartment on a neighboring spindle compartment. We find that spindle compartments in close proximity wait for one another to align all chromosomes before entering anaphase synchronously. Synchrony is disrupted in cells with increased interspindle distances and cellular constrictions between spindle compartments. In addition, when mitotic cells are fused with interphase cells, “wait anaphase” signals are diluted, resulting in premature mitotic exit. Overall our studies reveal that anaphase inhibitors are diffusible and active outside the confines of the mitotic spindle from which they are derived.


2015 ◽  
Vol 112 (37) ◽  
pp. 11536-11540 ◽  
Author(s):  
Shirly Miniowitz-Shemtov ◽  
Ety Eytan ◽  
Sharon Kaisari ◽  
Danielle Sitry-Shevah ◽  
Avram Hershko

The AAA-ATPase thyroid hormone receptor interacting protein 13 (TRIP13), jointly with the Mad2-binding protein p31comet, promotes the inactivation of the mitotic (spindle assembly) checkpoint by disassembling the mitotic checkpoint complex (MCC). This checkpoint system ensures the accuracy of chromosome segregation by delaying anaphase until correct bipolar attachment of chromatids to the mitotic spindle is achieved. MCC inhibits the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets for degradation securin, an inhibitor of anaphase initiation. MCC is composed of the checkpoint proteins Mad2, BubR1, and Bub3, in association with the APC/C activator Cdc20. The assembly of MCC in active checkpoint is initiated by the conversion of Mad2 from an open (O-Mad2) to a closed (C-Mad2) conformation, which then binds tightly to Cdc20. Conversely, the disassembly of MCC that takes place when the checkpoint is turned off involves the conversion of C-Mad2 back to O-Mad2. Previously, we found that the latter process is mediated by TRIP13 together with p31comet, but the mode of their interaction remained unknown. Here, we report that the oligomeric form of TRIP13 binds both p31comet and MCC. Furthermore, p31comet and checkpoint complexes mutually promote the binding of each other to oligomeric TRIP13. We propose that p31comet bound to C-Mad2–containing checkpoint complex is the substrate for the ATPase and that the substrate-binding site of TRIP13 is composed of subsites specific for p31comet and C-Mad2–containing complex. The simultaneous occupancy of both subsites is required for high-affinity binding to TRIP13.


2018 ◽  
Author(s):  
Gang Zhang ◽  
Jakob Nilsson

ABSTRACTThe spindle assembly checkpoint (SAC) ensures accurate chromosome segregation by delaying anaphase onset in response to unattached kinetochores. Anaphase is delayed by the generation of the mitotic checkpoint complex (MCC) composed of the checkpoint proteins Mad2 and BubR1/Bub3 bound to the protein Cdc20. Current models assume that MCC production is catalyzed at unattached kinetochores and that the Mad1/Mad2 complex is instrumental in the conversion of Mad2 from an open form (O-Mad2) to a closed form (C-Mad2) that can bind to Cdc20. Importantly the levels of Mad2 at kinetochores correlate with SAC activity but whether C-Mad2 at kinetochores exclusively represents its complex with Mad1 is not fully established. Here we use a recently established C-Mad2 specific monoclonal antibody to show that Cdc20 and C-Mad2 levels correlate at kinetochores and that depletion of Cdc20 reduces Mad2 but not Mad1 kinetochore levels. Importantly reintroducing wild type Cdc20 but not Cdc20 R132A, a mutant form that cannot bind Mad2, restores Mad2 levels. In agreement with this live cell imaging of fluorescent tagged Mad2 reveals that Cdc20 depletion strongly reduces Mad2 localization to kinetochores. These results support the presence of Mad2-Cdc20 complexes at kinetochores in agreement with current models of the SAC but also argue that Mad2 levels at kinetochores cannot be used as a direct readout of Mad1 levels.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Juan Zhao ◽  
Hui Li ◽  
Guangxin Chen ◽  
Lijun Du ◽  
Peiyan Xu ◽  
...  

Abstract Background Aneuploidy is the most frequent cause of early-embryo abortion. Any defect in chromosome segregation would fail to satisfy the spindle assembly checkpoint (SAC) during mitosis, halting metaphase and causing aneuploidy. The mitotic checkpoint complex (MCC), comprising MAD1, MAD2, Cdc20, BUBR1 and BUB3, plays a vital role in SAC activation. Studies have confirmed that overexpression of MAD2 and BUBR1 can facilitate correct chromosome segregation and embryo stability. Research also proves that miR-125b negatively regulates MAD1 expression by binding to its 3′UTR. However, miR-125b, Mad1 and Bub3 gene expression in aneuploid embryos of spontaneous abortion has not been reported to date. Methods In this study, embryonic villi from miscarried pregnancies were collected and divided into two groups (aneuploidy and euploidy) based on High-throughput ligation-dependent probe amplification (HLPA) and Fluorescence in situ hybridization (FISH) analyses. RNA levels of miR-125b, MAD1 and BUB3 were detected by Quantitative real-time PCR (qRT-PCR); protein levels of MAD1 and BUB3 were analysed by Western blotting. Results statistical analysis (p < 0.05) showed that miR-125b and BUB3 were significantly down-regulated in the aneuploidy group compared to the control group and that MAD1 was significantly up-regulated. Additionally, the MAD1 protein level was significantly higher in aneuploidy abortion villus, but BUB3 protein was only mildly increased. Correlation analysis revealed that expression of MAD1 correlated negatively with miR-125b. Conclusion These results suggest that aneuploid abortion correlates positively with MAD1 overexpression, which might be caused by insufficient levels of miR-125b. Taken together, our findings first confirmed the negative regulatory mode between MAD1 and miR-125b, providing a basis for further mechanism researches in aneuploid abortion.


Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 489-503 ◽  
Author(s):  
Karen E Ross ◽  
Orna Cohen-Fix

Abstract Cdh1p, a substrate specificity factor for the cell cycle-regulated ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), promotes exit from mitosis by directing the degradation of a number of proteins, including the mitotic cyclins. Here we present evidence that Cdh1p activity at the M/G1 transition is important not only for mitotic exit but also for high-fidelity chromosome segregation in the subsequent cell cycle. CDH1 showed genetic interactions with MAD2 and PDS1, genes encoding components of the mitotic spindle assembly checkpoint that acts at metaphase to prevent premature chromosome segregation. Unlike cdh1Δ and mad2Δ single mutants, the mad2Δ cdh1Δ double mutant grew slowly and exhibited high rates of chromosome and plasmid loss. Simultaneous deletion of PDS1 and CDH1 caused extensive chromosome missegregation and cell death. Our data suggest that at least part of the chromosome loss can be attributed to kinetochore/spindle problems. Our data further suggest that Cdh1p and Sic1p, a Cdc28p/Clb inhibitor, have overlapping as well as nonoverlapping roles in ensuring proper chromosome segregation. The severe growth defects of both mad2Δ cdh1Δ and pds1Δ cdh1Δ strains were rescued by overexpressing Swe1p, a G2/M inhibitor of the cyclin-dependent kinase, Cdc28p/Clb. We propose that the failure to degrade cyclins at the end of mitosis leaves cdh1Δ mutant strains with abnormal Cdc28p/Clb activity that interferes with proper chromosome segregation.


2016 ◽  
Vol 113 (19) ◽  
pp. E2570-E2578 ◽  
Author(s):  
Renping Qiao ◽  
Florian Weissmann ◽  
Masaya Yamaguchi ◽  
Nicholas G. Brown ◽  
Ryan VanderLinden ◽  
...  

Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/CCDC20 activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/CCDC20 activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.


Sign in / Sign up

Export Citation Format

Share Document