scholarly journals CD69 Association with Jak3/Stat5 Proteins Regulates Th17 Cell Differentiation

2010 ◽  
Vol 30 (20) ◽  
pp. 4877-4889 ◽  
Author(s):  
Pilar Martín ◽  
Manuel Gómez ◽  
Amalia Lamana ◽  
Arantxa Cruz-Adalia ◽  
Marta Ramírez-Huesca ◽  
...  

ABSTRACT T-cell differentiation involves the early decision to commit to a particular pattern of response to an antigen. Here, we show that the leukocyte activation antigen CD69 limits differentiation into proinflammatory helper T cells (Th17 cells). Upon antigen stimulation in vitro, CD4+ T cells from CD69-deficient mice generate an expansion of Th17 cells and the induction of greater mRNA expression of interleukin 17 (IL-17), IL 23 receptor (IL-23R), and the nuclear receptor retinoic acid-related orphan receptor γt (RORγt). In vivo studies with CD69-deficient mice bearing OTII T-cell receptors (TCRs) specific for OVA peptide showed a high proportion of antigen-specific Th17 subpopulation in the draining lymph nodes, as well as in CD69-deficient mice immunized with type II collagen. Biochemical analysis demonstrated that the CD69 cytoplasmic tail associates with the Jak3/Stat5 signaling pathway, which regulates the transcription of RORγt and, consequently, differentiation toward the Th17 lineage. Functional experiments in Th17 cultures demonstrated that the selective inhibition of Jak3 activation enhanced the transcription of RORγt. Moreover, the addition of exogenous IL-2 restored Stat5 phosphorylation and inhibited the enhanced Th17 differentiation in CD69-deficient cells. These results support the early activation receptor CD69 as an intrinsic modulator of the T-cell differentiation program that conditions immune inflammatory processes.

2021 ◽  
Author(s):  
Marie Goepp ◽  
Siobhan Crittenden ◽  
You Zhou ◽  
Adriano G Rossi ◽  
Shuh Narumiya ◽  
...  

Background and Purpose: Regulatory T (Treg) cells are essential for control of inflammatory processes by suppressing Th1 and Th17 cells. The bioactive lipid mediator prostaglandin E2 (PGE2) promotes inflammatory Th1 and Th17 cells and exacerbates T cell-mediated autoimmune diseases. However, the actions of PGE2 on the development and function of Treg cells, particularly under inflammatory conditions, are debated. In this study, we examined whether PGE2 had a direct action on T cells to modulate de novo differentiation of Treg cells. Experimental Approach: We employed an in vitro T cell culture system of TGF-β-dependent Treg induction from naive T cells. PGE2 and selective agonists for its receptors, and other small molecular inhibitors were used. Mice with specific lack of EP4 receptors in T cells were used to assess Treg cell differentiation in vivo. Human peripheral blood T cells from healthy individuals were used to induce differentiation of inducible Treg cells. Key Results: TGF-β-induced Foxp3 expression and Treg cell differentiation in vitro was markedly inhibited by PGE2, which was due to interrupting TGF-β signalling. EP2 or EP4 agonism mimicked suppression of Foxp3 expression in WT T cells, but not in T cells deficient in EP2 or EP4, respectively. Moreover, deficiency of EP4 in T cells impaired iTreg cell differentiation in vivo. PGE2 also appeared to inhibit the conversion of human iTreg cells. Conclusion and Implications: Our results show a direct, negative regulation of iTreg cell differentiation by PGE2, highlighting the potential for selectively targeting the PGE2-EP2/EP4 pathway to control T cell-mediated inflammation.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3039
Author(s):  
Mikołaj Nawrocki ◽  
Niels Lory ◽  
Tanja Bedke ◽  
Friederike Stumme ◽  
Björn-Phillip Diercks ◽  
...  

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing agent and its inhibition proved to inhibit T-cell activation. However, the impact of the NAADP signaling on CD4+ T-cell differentiation and plasticity and on the inflammation in tissues other than the central nervous system remains unclear. In this study, we used an antagonist of NAADP signaling, trans-Ned 19, to study the role of NAADP in CD4+ T-cell differentiation and effector function. Partial blockade of NAADP signaling in naïve CD4+ T cells in vitro promoted the differentiation of Th17 cells. Interestingly, trans-Ned 19 also promoted the production of IL-10, co-expression of LAG-3 and CD49b and increased the suppressive capacity of Th17 cells. Moreover, using an IL-17A fate mapping mouse model, we showed that NAADP inhibition promotes conversion of Th17 cells into regulatory T cells in vitro and in vivo. In line with the results, we found that inhibiting NAADP ameliorates disease in a mouse model of intestinal inflammation. Thus, these results reveal a novel function of NAADP in controlling the differentiation and plasticity of CD4+ T cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2470-2470
Author(s):  
James A Kennedy ◽  
Renata Teixeira ◽  
Sara Berthiaume ◽  
Frederic Barabe

Abstract Abstract 2470 LMO2 is overexpressed in a significant percentage of human T cell acute lymphoblastic leukemia (T-ALL) and its locus has been the target of insertional mutagenesis in gene therapy trials. In the past years, 4 X-linked severe combined immunodeficiency (X-linked SCID) and one Wiskott-Aldrich syndrome (WAS) patients who were treated by retrovirus-mediated gene therapy developed T-ALL as a result of retroviral integration in the LMO2 locus. In these patients, leukemia developed 2 to 3 years after gene therapy without prior significant haematological abnormalities. However, both the latency of disease and the finding of additional somatic mutations and/or translocations in these leukemias suggest that the overexpression of LMO2 alone is insufficient to generate leukemia, a notion that has been supported by studies in mouse. Though LMO2 is typically recognized as a T-cell oncogene, reports have shown that it is also aberrantly expressed in acute myeloid leukemias (AML), chronic myeloid leukemia (CML), B-ALL and some non-hodgkin B cell lymphomas. In order to study the impact of LMO2 overexpression on human hematopoietic stem/progenitor cells, a lentiviral vector was used to express this oncogene together with EGFP in lineage-depleted umbilical cord blood. In myeloid-promoting cultures, LMO2 had no effect on either differentiation or proliferation. Moreover, the expression of LMO2 did not modify the frequency or lineage distribution of colony forming progenitors compared to controls. However, significant differences were noted when transduced cells were assayed on OP9-Delta-Like 1 (DL1) stroma, an in vitro system that promotes T cell proliferation and differentiation. Cells overexpressing LMO2 were blocked at the double negative stage (CD4-CD8-) of differentiation and proliferated 50 to 100 times more than control cells. However, these cells were not immortalized as they proliferated for a median of 75 days, versus 50 days for controls. Immunodeficient mice transplanted with primitive human hematopoietic cells expressing LMO2 (hereafter referred as LMO2 mice) had bone marrow engraftment levels comparable to controls at 20–24 weeks post-transplant. Neither B-lymphoid nor myeloid development were affected by LMO2 overexpression. Strikingly, in the thymus, the percentage of EGFP+ cells was significantly increased in LMO2 mice compared to controls (mean of 47.7% versus 8.8%, p=0.0001), clearly indicating that expression of this oncogene enhances thymic T-cell engraftment. We next analyzed the phenotype of LMO2-expressing T cells in the thymus and peripheral blood of these mice. Surprisingly, unlike our in vitro studies, there was no evidence of a block at the DN-stage of differentiation. Instead, there were significantly less EGFP+ DN cells in the thymi of LMO2 mice compared to controls (mean of 7.5% vs 14.5%, p=0.035). These results clearly demonstrate that unlike what was observed in OP9-DL1 co-cultures, LMO2 overexpression does not induce a block in T-cell differentiation in our in vivo system. One possible explanation for this difference is the constitutive NOTCH signaling provided via DL1 on stroma compared to the in vivo setting where LMO2-expressing cells would encounter different levels and forms of NOTCH signaling throughout development. To test this hypothesis, LMO2 cells were cultured on OP9-DL1 stroma for 50 days then switched onto OP9 stroma lacking NOTCH ligand. Upon transfer, the DN cells promptly stopped proliferating and differentiated into DP (CD4+CD8+) cells expressing CD3 and TCRαβ. Thus, our results suggest that in the in vivo setting, as cells migrate through the thymus and face a decrease in NOTCH signaling, LMO2 overexpression alone can promote proliferation, but is not sufficient to maintain a differentiation block. However, constitutive NOTCH signaling can cooperate with LMO2 overexpression to block T cell differentiation at a proliferative DN stage. Thus, one can postulate that LMO2 exerts a proliferative effect on developing T-cells in thymic regions with high levels of NOTCH signaling, potentially providing a setting for the development of secondary leukemogenic events. NOTCH mutations are common in human T-ALL and can therefore allow for LMO2 overexpressing cells to become independent of the stromal niche. Taken together, our results suggest cooperation between LMO2 overexpression and NOTCH signaling in human T-cell leukemogenesis. Disclosures: No relevant conflicts of interest to declare.


1997 ◽  
Vol 186 (1) ◽  
pp. 101-107 ◽  
Author(s):  
Daniel R. Brown ◽  
Naomi H. Moskowitz ◽  
Nigel Killeen ◽  
Steven L. Reiner

Naive CD4+ T helper cells (Th) differentiate into one of two well-defined cell types during immune responses. Mature Th1 and Th2 cells regulate the type of response as a consequence of the unique cytokines that they secrete. CD4 serves a prominent role in potentiating antigen recognition by helper T cells. We have examined the role of CD4 in peripheral T cell differentiation by studying helper T cells from mice with a congenital defect in CD4 expression. After protein immunization or infection with Leishmania major, CD4-deficient mice were incapable of mounting antigen-specific Th2 responses, but retained their Th1 potency. CD4-deficient, T cell receptor transgenic T cells were also incapable of Th2 differentiation after in vitro activation. Expression of a wild-type CD4 transgene corrected the Th2 defect of CD4-deficient mice in all immune responses tested. To investigate the role of the cytoplasmic domain, mice reconstituted with a truncated CD4 molecule were also studied. Expression of the tailless CD4 transgene could not rescue the Th2 defect of CD4-deficient mice immunized with protein or CD4-deficient transgenic T cells activated in vitro, raising the possibility that the cytoplasmic domain of CD4 may influence Th2 generation. Expression of the tailless transgene was, however, capable of restoring Th2 development in CD4-deficient mice infected with L. major or CD4-deficient transgenic T cells activated in the presence of recombinant IL-4, demonstrating that the cytoplasmic domain is not absolutely required for Th2 development. Together, these results demonstrate a previously undescribed role of the CD4 molecule. The requirement for CD4 in Th2 maturation reflects the importance of molecules other than cytokines in the control of helper T cell differentiation.


2019 ◽  
Author(s):  
Eliza Mari Kwesi-Maliepaard ◽  
Muhammad Assad Aslam ◽  
Mir Farshid Alemdehy ◽  
Teun van den Brand ◽  
Chelsea McLean ◽  
...  

AbstractCytotoxic T-cell differentiation is guided by epigenome adaptations but how epigenetic mechanisms control lymphocyte development has not been well defined. Here we show that the histone methyltransferase DOT1L, which marks the nucleosome core on active genes, safeguards normal differentiation of CD8+ T cells. T-cell specific ablation of Dot1L resulted in loss of naïve CD8+ T cells and premature differentiation towards a memory-like state, independent of antigen exposure and in a cell-intrinsic manner. Without DOT1L, the memory-like CD8+ cells fail to acquire full effector functions in vitro and in vivo. Mechanistically, DOT1L controlled T-cell differentiation and function by ensuring normal T-cell receptor density and signaling, and by maintaining epigenetic identity, in part by indirectly supporting the repression of developmentally-regulated genes. Through our study DOT1L is emerging as a central player in physiology of CD8+ T cells, acting as a barrier to prevent premature differentiation and supporting the licensing of the full effector potential of cytotoxic T cells.


2021 ◽  
Author(s):  
Juan Fernandez-Garcia ◽  
Fabien Franco ◽  
Sweta Parik ◽  
Antonino A Pane ◽  
Dorien Broekaert ◽  
...  

Cytotoxic T cells dynamically rewire their metabolism during the course of an immune response. While T cell metabolism has been extensively studied at phenotypic endpoints of activation and differentiation, the underlying dynamics remain largely elusive. Here, we leverage on single-cell RNA-sequencing (scRNA-seq) measurements of in vitro activated and differentiated CD8+ T cells cultured in physiological media to resolve these metabolic dynamics. We find that our scRNA-seq analysis identifies most metabolic changes previously defined in in vivo experiments, such as a rewiring from an oxidative to an anabolism-promoting metabolic program during activation to an effector state, which is later reverted upon memory polarization. Importantly, our scRNA-seq data further provide a dynamic description of these changes. In this sense, our data predict a differential time-dependent reliance of CD8+ T cells on the synthesis versus uptake of various non-essential amino acids during T cell activation, which we corroborate with additional functional in vitro experiments. We further exploit our scRNA-seq data to identify metabolic genes that could potentially dictate the outcome of T cell differentiation, by ranking them based on their expression dynamics. Among the highest-ranked hits, we find asparagine synthetase (Asns), whose expression sharply peaks for effector CD8+ T cells and further decays towards memory polarization. We then confirm that these in vitro Asns expression dynamics are representative of an in vivo situation in a mouse model of viral infection. Moreover, we find that disrupting these expression dynamics in vitro, by depleting asparagine from the culture media, delays central-memory polarization. Accordingly, we find that preventing the decay of ASNS by stable overexpression at the protein level in vivo leads to a significant increase in effector CD8+ T cell expansion, and a concomitant decrease in central-memory formation, in a mouse model of viral infection. This shows that ASNS expression dynamics dictate the fate of CD8+ T cell differentiation. In conclusion, we provide a resource of dynamic expression changes during CD8+ T cell activation and differentiation that is expected to increase our understanding of the dynamic metabolic requirements of T cells progressing along the immune response cascade.


2020 ◽  
Vol 217 (4) ◽  
Author(s):  
Yajing Gao ◽  
Krystin Deason ◽  
Aakanksha Jain ◽  
Ricardo A. Irizarry-Caro ◽  
Igor Dozmorov ◽  
...  

Dendritic cells (DCs) are critical for the differentiation of pathogen-specific CD4 T cells. However, to what extent innate cues from DCs dictate transcriptional changes in T cells remains elusive. Here, we used DCs stimulated with specific pathogens to prime CD4 T cells in vitro and found that these T cells express unique transcriptional profiles dictated by the nature of the priming pathogen. More specifically, the transcriptome of in vitro C. rodentium–primed Th17 cells resembled that of Th17 cells primed following infection in vivo but was remarkably distinct from cytokine-polarized Th17 cells. We identified caspase-1 as a unique gene up-regulated only in pathogen-primed Th17 cells and discovered a critical role for T cell–intrinsic caspase-1, independent of inflammasome, in optimal priming of Th17 responses. T cells lacking caspase-1 failed to induce colitis or confer protection against C. rodentium infection due to suboptimal Th17 cell differentiation in vivo. This study underlines the importance of DC-mediated priming in identifying novel regulators of T cell differentiation.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2423-2423
Author(s):  
Kirsten Canté-Barrett ◽  
Rui D Mendes ◽  
Wilco K Smits ◽  
Rob Pieters ◽  
Jules PP Meijerink

Abstract Background: T-cell development in the thymus is a complex process that depends on sequential transcriptional and epigenetic events that induce T-cell lineage commitment and simultaneously suppress alternative cell fates. In T-cell acute lymphoblastic leukemia (T-ALL), aberrantly expressed oncogenes result in the arrest of developing thymocytes, which can lead to the acquisition of secondary mutations, uncontrolled proliferation and disease progression. MEF2C is often expressed as a result of chromosomal rearrangements in immature, early T-cell progenitor ALL (ETP-ALL), but is also expressed in normal thymocyte progenitors before T-cell commitment (in the ETP stage). As the only hematopoietic lineage, thymocytes that have passed the T-cell commitment checkpoint (as well as mature T-cells) do no longer express MEF2C. Aims: We aimed to investigate the effect of constitutive MEF2C expression on early T-cell development. OP9-DL1 co-cultures have been most useful for mimicking in vitro T-cell development starting with hematopoietic stem cells (HSCs) derived from human cord blood or bone marrow. We also aimed to investigate the impact of MEF2C in comparison to LYL1 and LMO2; two T-ALL oncogenes also highly expressed at the ETP stage. Methods: We have utilized the OP9-DL1 in vitro co-culture system to gradually differentiate CD34+ HSCs from umbilical cord blood into the T-cell lineage. HSCs in this co-culture will recapitulate in vivo T-cell development as measured by incremental acquisition of surface markers CD7, CD5, CD1a, and reach the CD4, CD8 double-positive (DP) stage. We generated gene expression profiles of 11 subsequent in vitro stages of differentiation to help us match them to in vivo development stages. We investigated in vitro T-cell differentiation of HSCs after lentiviral transduction with MEF2C or control vectors, as well as with other transcriptional regulators LYL1 and LMO2 that are expressed at the ETP stage. Results: The major change in gene expression of subsequent early T-cell differentiation stages defines two distinct T-cell differentiation clusters that correlate with in vivo pre- and post-T-cell commitment profiles. We found that T-cell commitment occurs in CD7+ CD5+ cells before the acquisition of CD1a surface expression. Expression of control vectors in HSCs does not affect the in vitro T-cell differentiation, but MEF2C expression blocks differentiation into the direction of T-cells as measured by the failure of most cells to acquire CD7 as the first marker. Instead, with increased passage number cells gradually lose CD34 expression and eventually disappear from the co-culture. Similar effects were observed for the expression of LYL1 and LMO2; LYL1 expression arrests the cells at the most immature CD7+ ETP stage and prevents the transition towards CD7+ CD5+ cells, whereas LMO2 expressing cells reach the CD7+ CD5+ stage but fail to acquire CD1a as a marker of T-cell commitment. Summary/Conclusion: The gene expression profiles of 11 human in vitro T-cell differentiation subsets has enabled us to pinpoint T-cell commitment to a stage in which cells have acquired CD7 and CD5, just prior to the acquisition of CD1a. MEF2C, LYL1, and LMO2, expressed in ETP-ALL as well as in normal thymocyte progenitors, do not allow the transition to T-cell commitment when constitutively expressed. These proteins each result in the arrest of in vitro differentiating T-cells at different ETP stages, all before the T-cell commitment as marked by CD1a expression. Constitutive expression of MEF2C, LYL1, or LMO2 in very early thymocyte progenitors is incompatible with development into and beyond the T-cell commitment checkpoint and these proteins could therefore play important roles in the pathogenesis of ETP-ALL. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A172-A172
Author(s):  
Guillermo Rangel Rivera ◽  
Guillermo Rangel RIvera ◽  
Connor Dwyer ◽  
Dimitrios Arhontoulis ◽  
Hannah Knochelmann ◽  
...  

BackgroundDurable responses have been observed with adoptive T cell therapy (ACT) in some patients. However, current protocols used to expand T cells often exhibit suboptimal tumor control. Failure in these therapies has been attributed to premature differentiation and impaired metabolism of the infused T cells. Previous work done in our lab showed that reduced PI3Kδ signaling improved ACT. Because PI3Kγ and PI3Kδ have critical regulatory roles in T cell differentiation and function, we tested whether inhibiting PI3Kγ could recapitulate or synergize PI3Kδ blockade.MethodsTo test this, we primed melanoma specific CD8+ pmel-1 T cells, which are specific to the glycoprotein 100 epitope, in the presence of PI3Kγ (IPI-459), PI3Kδ (CAL101 or TGR-1202) or PI3Kγ/δ (IPI-145) inhibitors following antigen stimulation with hgp100, and then infused them into 5Gy total body irradiated B16F10 tumor bearing mice. We characterized the phenotype of the transferred product by flow cytometry and then assessed their tumor control by measuring the tumor area every other day with clippers. For metabolic assays we utilized the 2-NBDG glucose uptake dye and the real time energy flux analysis by seahorse.ResultsSole inhibition of PI3Kδ or PI3Kγ in vitro promoted greater tumor immunity and survival compared to dual inhibition. To understand how PI3Kδ or PI3Kγ blockade improved T cell therapy, we assessed their phenotype. CAL101 treatment produced more CD62LhiCD44lo T cells compared to IPI-459, while TGR-1202 enriched mostly CD62LhiCD44hi T cells. Because decreased T cell differentiation is associated with mitochondrial metabolism, we focused on CAL101 treated T cells to study their metabolism. We found that CAL101 decreased glucose uptake and increased mitochondrial respiration in vitro, indicating augmented mitochondrial function.ConclusionsThese findings indicate that blocking PI3Kδ is sufficient to mediate lasting tumor immunity of adoptively transferred T cells by preventing premature differentiation and improving mitochondrial fitness. Our data suggest that addition of CAL101 to ACT expansion protocols could greatly improve T cell therapies for solid tumors by preventing T cell differentiation and improving mitochondrial function.


2008 ◽  
Vol 205 (7) ◽  
pp. 1551-1557 ◽  
Author(s):  
Cindy S. Ma ◽  
Gary Y.J. Chew ◽  
Nicholas Simpson ◽  
Archana Priyadarshi ◽  
Melanie Wong ◽  
...  

Hyper–immunoglobulin E syndrome (HIES) is a primary immune deficiency characterized by abnormal and devastating susceptibility to a narrow spectrum of infections, most commonly Staphylococcus aureus and Candida albicans. Recent investigations have identified mutations in STAT3 in the majority of HIES patients studied. Despite the identification of the genetic cause of HIES, the mechanisms underlying the pathological features of this disease remain to be elucidated. Here, we demonstrate a failure of CD4+ T cells harboring heterozygous STAT3 mutations to generate interleukin 17–secreting (i.e., T helper [Th]17) cells in vivo and in vitro due to a failure to express sufficient levels of the Th17-specific transcriptional regulator retinoid-related orphan receptor γt. Because Th17 cells are enriched for cells with specificities against fungal antigens, our results may explain the pattern of infection susceptibility characteristic of patients with HIES. Furthermore, they underscore the importance of Th17 responses in normal host defense against the common pathogens S. aureus and C. albicans.


Sign in / Sign up

Export Citation Format

Share Document