scholarly journals Myocyte-Derived Hsp90 Modulates Collagen Upregulation via Biphasic Activation of STAT-3 in Fibroblasts during Cardiac Hypertrophy

2016 ◽  
Vol 37 (6) ◽  
Author(s):  
Ritwik Datta ◽  
Trisha Bansal ◽  
Santanu Rana ◽  
Kaberi Datta ◽  
Ratul Datta Chaudhuri ◽  
...  

ABSTRACT Signal transducer and activator of transcription 3 (STAT-3)-mediated signaling in relation to upregulated collagen expression in fibroblasts during cardiac hypertrophy is well defined. Our recent findings have identified heat shock protein 90 (Hsp90) to be a critical modulator of fibrotic signaling in cardiac fibroblasts in this disease milieu. The present study was therefore intended to analyze the role of Hsp90 in the STAT-3-mediated collagen upregulation process. Our data revealed a significant difference between in vivo and in vitro results, pointing to a possible involvement of myocyte-fibroblast cross talk in this process. Cardiomyocyte-targeted knockdown of Hsp90 in rats (Rattus norvegicus) in which the renal artery was ligated showed downregulated collagen synthesis. Furthermore, the results obtained with cardiac fibroblasts conditioned with Hsp90-inhibited hypertrophied myocyte supernatant pointed toward cardiomyocytes' role in the regulation of collagen expression in fibroblasts during hypertrophy. Our study also revealed a novel signaling mechanism where myocyte-derived Hsp90 orchestrates not only p65-mediated interleukin-6 (IL-6) synthesis but also its release in exosomal vesicles. Such myocyte-derived exosomes and myocyte-secreted IL-6 are responsible in unison for the biphasic activation of STAT-3 signaling in cardiac fibroblasts that culminates in excess collagen synthesis, leading to severely compromised cardiac function during cardiac hypertrophy.

2020 ◽  
Vol 26 (6) ◽  
pp. 1131-1143 ◽  
Author(s):  
Kesheng Lin ◽  
Jie Liu ◽  
Jia-Min Wu ◽  
Yunlong Sun ◽  
Feng Li ◽  
...  

Purpose The main cause of aseptic inflammation after an in vivo implantation is that Poly(L-lactide) (PLLA) and Poly(D-lactide) have a slower degradation and absorption rate, while Poly(D, L-lactide) (PDLLA) has a much faster degradation rate than PLLA because of its amorphous structure. Also, the hydrolyzate of Hydroxyapatite (HA) is alkaline, which can neutralize local tissue peracid caused by hydrolysis of Polylactic acid. Design/methodology/approach In this study, the selective laser sintering (SLS) technique was chosen to prepare bone scaffolds using nano-HA/PDLLA composite microspheres, which were prepared by the solid-in-oil-in-water (S/O/W) method. First, the SLS parameters range of bulk was determined by the result of a single-layer experiment and the optimized parameters were then obtained by the orthogonal experiment. The tensile property, hydrophobicity, biocompatibility, biological toxicity and in vitro degradation of the samples with optimized SLS parameters were characterized. Findings As a result, the samples showed a lower tensile strength because of the many holes in their interior, which was conducive to better cell adhesion and nutrient transport. In addition, the samples retained their inherent properties after SLS and the hydrophobicity was improved after adding nano-HA because of the OH group. Furthermore, the samples showed good biocompatibility with the large number of cells adhering to the material through pseudopods and there was no significant difference between the pure PDLLA and 10% HA/PDLLA in terms of biological toxicity. Finally, the degradation rate of the composites could be tailored by the amount of nano-HA. Originality/value This study combined the S/O/W and SLS technique and provides a theoretical future basis for the preparation of drug-loaded microsphere scaffolds through SLS using HA/PDLLA composites.


2016 ◽  
Vol 48 (3) ◽  
pp. 220-229 ◽  
Author(s):  
Christopher A. Drummond ◽  
Michael C. Hill ◽  
Huilin Shi ◽  
Xiaoming Fan ◽  
Jeffrey X. Xie ◽  
...  

Chronic kidney disease (CKD) is accompanied by cardiac fibrosis, hypertrophy, and dysfunction, which are commonly referred to as uremic cardiomyopathy. Our previous studies found that Na/K-ATPase ligands or 5/6th partial nephrectomy (PNx) induces cardiac fibrosis in rats and mice. The current study used in vitro and in vivo models to explore novel roles for microRNA in this mechanism of cardiac fibrosis formation. To accomplish this, we performed microRNA profiling with RT-qPCR based arrays on cardiac tissue from rats subjected to marinobufagenin (MBG) infusion or PNx. The analysis showed that a series of fibrosis-related microRNAs were dysregulated. Among the dysregulated microRNAs, microRNA (miR)-29b-3p, which directly targets mRNA of collagen, was consistently reduced in both PNx and MBG-infused animals. In vitro experiments demonstrated that treatment of primary cultures of adult rat cardiac fibroblasts with Na/K-ATPase ligands induced significant increases in the fibrosis marker, collagen protein, and mRNA expression compared with controls, whereas miR-29b-3p expression decreased >50%. Transfection of miR-29b-3p mimics into cardiac fibroblasts inhibited cardiotonic steroids-induced collagen synthesis. Moreover, a specific Na/K-ATPase signaling antagonist, pNaKtide, prevented ouabain-induced increases in collagen synthesis and decreases in miR-29b-3p expression in these cells. In conclusion, these data are the first to indicate that signaling through Na/K-ATPase regulates miRNAs and specifically, miR-29b-3p expression both in vivo and in vitro. Additionally, these data indicate that miR-29b-3p expression plays an important role in the formation of cardiac fibrosis in CKD.


2021 ◽  
Author(s):  
Rui Xiong ◽  
Ning Li ◽  
Wei Wang ◽  
Bo Wang ◽  
Wenyang Jiang ◽  
...  

Abstract Background Heart failure, which is characterized by cardiac remodelling, is one of the most common chronic diseases in the aged. Stimulator of interferon genes (STING) acts as an indispensable molecule modulating immune response and inflammation in many diseases. However, the effects of STING on cardiomyopathy, especially cardiac remodelling are still largely unknown. This study was designed to investigate whether STING could affect cardiac remodelling and to explore the potential mechanisms. Methods In vivo, aortic binding (AB) surgery was performed to construct the mice model of cardiac remodelling. A DNA microinjection system was used to trigger STING overexpression in mice. The STING mRNA and protein expression levels in mice heart were measured, and the cardiac hypertrophy, fibrosis, inflammation and cardiac function were also evaluated. In vitro, cardiomyocytes stimulated by Ang II and cardiac fibroblasts stimulated by TGF-β to performed to further study effects of STING on cardiac hypertrophy and fibroblast. In terms of mechanisms, the level of autophagy was detected in mice challenged with AB. Rapamycin, a canonical autophagy inducer, intraperitoneal injected into mice to study possible potential pathway. Results In vivo, the STING mRNA and protein expression levels in mice heart challenged with AB for 6 weeks were significantly increased. STING overexpression significantly mitigated cardiac hypertrophy, fibrosis and inflammation, apart from improving cardiac function. In vitro, experiments further disclosed that STING overexpression in cardiomyocytes induced by Ang II significantly inhibited the level of cardiomyocyte cross-section area and the ANP mRNA. Meanwhile, TGF-β-induced the increase of α-SMA content and collagen synthesis in cardiac fibroblasts could be also blocked by STING overexpression. In terms of mechanisms, mice challenged with AB showed higher level of autophagy compared with the normal mice. However, STING overexpression could reverse the activation of autophagy triggered by AB. Rapamycin, a canonical autophagy inducer, offset the cardioprotective effects of STING in mice challenged with AB. Finally, further experiments unveiled that STING may inhibit autophagy by phosphorylating ULK1 on serine757. Conclusions STING may prevent cardiac remodelling induced by pressure overload by inhibiting autophagy, which could be a promising therapeutic target in heart failure.


2021 ◽  
Author(s):  
Rui Xiong ◽  
Ning Li ◽  
Bohao Liu ◽  
Ruyuan He ◽  
Wenyang Jiang ◽  
...  

Abstract Background: Heart failure, which is characterized by cardiac remodelling, is one of the most common chronic diseases in the aged. Stimulator of interferon genes (STING) acts as an indispensable molecule modulating immune response and inflammation in many diseases. However, the effects of STING on cardiomyopathy, especially cardiac remodelling are still largely unknown. This study was designed to investigate whether STING could affect cardiac remodelling and to explore the potential mechanisms. Methods: In vivo, aortic binding (AB) surgery was performed to construct the mice model of cardiac remodelling. A DNA microinjection system was used to trigger STING overexpression in mice. The STING mRNA and protein expression levels in mice heart were measured, and the cardiac hypertrophy, fibrosis, inflammation and cardiac function were also evaluated. In vitro, cardiomyocytes stimulated by Ang II and cardiac fibroblasts stimulated by TGF-β to performed to further study effects of STING on cardiac hypertrophy and fibroblast. In terms of mechanisms, the level of autophagy was detected in mice challenged with AB. Rapamycin, a canonical autophagy inducer, intraperitoneal injected into mice to study possible potential pathway.Results: In vivo, the STING mRNA and protein expression levels in mice heart challenged with AB for 6 weeks were significantly increased. STING overexpression significantly mitigated cardiac hypertrophy, fibrosis and inflammation, apart from improving cardiac function. In vitro, experiments further disclosed that STING overexpression in cardiomyocytes induced by Ang II significantly inhibited the level of cardiomyocyte cross-section area and the ANP mRNA. Meanwhile, TGF-β-induced the increase of α-SMA content and collagen synthesis in cardiac fibroblasts could be also blocked by STING overexpression. In terms of mechanisms, mice challenged with AB showed higher level of autophagy compared with the normal mice. However, STING overexpression could reverse the activation of autophagy triggered by AB. Rapamycin, a canonical autophagy inducer, offset the cardioprotective effects of STING in mice challenged with AB. Finally, further experiments unveiled that STING may inhibit autophagy by phosphorylating ULK1 on serine757.Conclusion: STING may prevent cardiac remodelling induced by pressure overload by inhibiting autophagy, which could be a promising therapeutic target in heart failure.


2006 ◽  
Vol 291 (1) ◽  
pp. H436-H440 ◽  
Author(s):  
S. Sapna ◽  
S. K. Ranjith ◽  
K. Shivakumar

Mechanisms underlying cardiac fibrogenesis in magnesium deficiency are unclear. It was reported earlier from this laboratory that serum from magnesium-deficient rats has a more pronounced stimulatory effect on cell proliferation, net collagen production, and superoxide generation in adult rat cardiac fibroblasts than serum from rats on the control diet. The profibrotic serum factors were, however, not identified. This study tested the hypothesis that circulating angiotensin II may modulate cardiac fibroblast activity in hypomagnesemic rats. Male Sprague-Dawley rats were pair-fed a magnesium-deficient (0.0008% Mg) or -sufficient (0.05%) diet for 6 days, and the effects of serum from these rats on [3H]thymidine and [3H]proline incorporation into cardiac fibroblasts from young adult rats were evaluated in the presence of losartan, an angiotensin II type 1 (AT1) receptor antagonist, and spironolactone, an aldosterone antagonist. Losartan and spironolactone markedly attenuated the stimulatory effects in vitro of serum from the magnesium-deficient and control groups, but the inhibitory effects were considerably higher in cells exposed to serum from magnesium-deficient animals. Circulating and cardiac tissue levels of angiotensin II were significantly elevated in magnesium-deficient animals (67.6% and 93.1%, respectively, vs. control). Plasma renin activity was 61.9% higher in magnesium-deficient rats, but serum angiotensin-converting enzyme activity was comparable in the two groups. Furthermore, preliminary experiments in vivo using enalapril supported a role for angiotensin II in magnesium deficiency. There was no significant difference between the groups in serum aldosterone levels. The findings suggest that circulating angiotensin II and aldosterone may stimulate fibroblast activity and contribute to a fibrogenic response in the heart in magnesium deficiency.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Chuanshan Zhang ◽  
Jing Li ◽  
Tuerganaili Aji ◽  
Liang Li ◽  
Xiaojuan Bi ◽  
...  

ABSTRACT Cystic echinococcosis is a zoonosis caused by the larval stage of Echinococcus granulosus sensu lato. There is an urgent need to develop new drugs for the treatment of this disease. In this study, we identified two new members of mitogen-activated protein kinase (MAPK) cascades, MKK3/6 and MEK1/2 homologs (termed EgMKK1 and EgMKK2, respectively), from E. granulosus sensu stricto. Both EgMKK1 and EgMKK2 were expressed at the larval stages. As shown by yeast two-hybrid and coimmunoprecipitation analyses, EgMKK1 interacted with the previously identified Egp38 protein but not with EgERK. EgMKK2, on the other hand, interacted with EgERK. In addition, EgMKK1 and EgMKK2 displayed kinase activity toward the substrate myelin basic protein. When sorafenib tosylate, PD184352, or U0126-ethanol (EtOH) was added to the medium for in vitro culture of E. granulosus protoscoleces (PSCs) or cysts, an inhibitory and cytolytic effect was observed via suppressed phosphorylation of EgMKKs and EgERK. Nonviability of PSCs treated with sorafenib tosylate or U0126-EtOH, and not with PD184352, was confirmed through bioassays, i.e., inoculation of treated and untreated protoscoleces into mice. In vivo treatment of E. granulosus sensu stricto-infected mice with sorafenib tosylate or U0126-EtOH for 4 weeks demonstrated a reduction in parasite weight, but the results did not show a significant difference. In conclusion, the MAPK cascades were identified as new targets for drug development, and E. granulosus was efficiently inhibited by their inhibitors in vitro. The translation of these findings into in vivo efficacy requires further adjustment of treatment regimens using sorafenib tosylate or, possibly, other kinase inhibitors.


2008 ◽  
Vol 105 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Nasser El-Okdi ◽  
Sleiman Smaili ◽  
Vanamala Raju ◽  
Amjad Shidyak ◽  
Shalini Gupta ◽  
...  

We previously reported that cardiotonic steroids stimulate collagen synthesis by cardiac fibroblasts in a process that involves signaling through the Na-K-ATPase pathway (Elkareh et al. Hypertension 49: 215–224, 2007). In this study, we examined the effect of cardiotonic steroids on dermal fibroblasts collagen synthesis and on wound healing. Increased collagen expression by human dermal fibroblasts was noted in response to the cardiotonic steroid marinobufagenin in a dose- and time-dependent fashion. An eightfold increase in collagen synthesis was noted when cells were exposed to 10 nM marinobufagenin for 24 h ( P < 0.01). Similar increases in proline incorporation were seen following treatment with digoxin, ouabain, and marinobufagenin (10 nM × 24 h, all results P < 0.01 vs. control). The coadministration of the Src inhibitor PP2 or N-acetylcysteine completely prevented collagen stimulation by marinobufagenin. Next, we examined the effect of digoxin, ouabain, and marinobufagenin on the rate of wound closure in an in vitro model where human dermal fibroblasts cultures were wounded with a pipette tip and monitored by digital microscopy. Finally, we administered digoxin in an in vivo wound healing model. Olive oil was chosen as the digoxin carrier because of a favorable partition coefficient observed for labeled digoxin with saline. This application significantly accelerated in vivo wound healing in rats wounded with an 8-mm biopsy cut. Increased collagen accumulation was noted 9 days after wounding (both P < 0.01). The data suggest that cardiotonic steroids induce increases in collagen synthesis by dermal fibroblasts, as could potentially be exploited to accelerate wound healing.


Sign in / Sign up

Export Citation Format

Share Document